
Assessment of Capabilities of Extremely Low
Probability of Rupture (xLPR) Software—GoldSim and

SIAM Version 1.0

Prepared for

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research

Prepared by

Osvaldo Pensado1
E. Lynn Tipton1

Sitakanta Mohanty1
Thomas Wilt1
Robert Brient1
Graham Chell2

George Adams1
Kaushik Das1

Debashis Basu1

1Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

2Southwest Research Institute®

San Antonio, Texas

May 2011

ii

ABSTRACT

The U.S. Nuclear Regulation Commission (NRC), Office of Nuclear Regulatory Research has
entered into a cooperative program with the Electric Power Research Institute (EPRI) with the
goal to develop a modular-based, probabilistic fracture mechanics tool or code capable of
determining the probability of failure for reactor coolant system components. This code is
referred to as extremely low probability of rupture (xLPR). The intention of the code is to
encompass a range of physical processes, to be flexible to permit analysis of a variety of
service conditions, and to be adaptable to accommodate evolving and improving knowledge. A
pilot study was sponsored by the NRC and EPRI as a proof of concept to test (i) the feasibility of
developing probabilistic models for failure mechanisms for a component of the piping coolant
system, (ii) configuration management and quality assurance for multiple-party code
development, and (iii) existing tools for the prompt deployment of probabilistic models (NRC and
EPRI, 2011). The problem of initiation and growth of primary water stress corrosion cracks in a
dissimilar metal pressurizer surge nozzle weld of the piping coolant system in a nuclear power
plant was selected as the subject of the pilot study. To test existing tools for quick deployment
of probabilistic models, the commercial GoldSim® (GoldSim Technology Group LLC, 2011)
software and open source tools (SIAM-PFM) were identified to support a modular development
of the xLPR code. In this report, the Center for Nuclear Waste Regulatory Analyses (CNWRA®)
provides an independent assessment of the GoldSim and SIAM frames to support development
of the xLPR code. The evaluation focused on (i) ease of use from a user perspective,
(ii) readability from a model developer perspective, (iii) flexibility and adaptability from a model
developer perspective, and (iv) potential of the frame for expansion of xLPR. Two of the
appendices report also address several other aspects related to the framework development,
including elements of a robust quality assurance program; the configuration management
system implemented to support controlled development of the xLPR; tasks to develop model
validation, in the context of a quality assurance program; and results of a limited code
verification of FORTRAN modules common to the xLPR-GoldSim and xLPR-SIAM codes. In
the independent CNWRA analysis, xLPR-GoldSim and xLPR-SIAM were found to have different
limitations and strengths in regard to future development potential. In general, for
xLPR-GoldSim, the GoldSim environment offers convenience at the cost of workarounds and
the need for external tools. For post-processing data, xLPR-SIAM offers flexibility, scalability
potential, and the possibility to develop integrated units for total risk assessments; however, an
extra investment is needed to build the frame to make it accessible to programmers of different
skill levels. Under a set of defined assumptions a cost estimate for NRC staff to use
xLPR-GoldSim or xLPR-SIAM within the next 5 years was made using the xLPR-SIAM frame
was estimated to have a higher cost over a 5-year period than using of the xLPR-GoldSim
frame, due to the extra investment needed to develop SIAM to a more mature state. However,
NRC staff would spend less time using the xLPR-SIAM because of the expected seamless
integration with post-processing tools.

References

NRC and EPRI. “xLPR Version 1.0 Report, Technical Basis and Pilot Study Problem Results.”
Washington, DC: NRC, Office of Nuclear Regulatory Research; Palo Alto, California:
EPRI. 2011.

GoldSim Technology Group LLC. “GoldSim Version 10.11.” Issaquah, Washington: GoldSim
Technology Group LLC. <http://www.GoldSim.com> 2011.

iii

CONTENTS

Section Page

ABSTRACT .. ii
FIGURES .. iv
TABLES ... v
ACKNOWLEDGMENTS ... vi

1 INTRODUCTION .. 1-1

2 CODE EFFICIENCY AND OPERATIONAL CONVENIENCE FROM END
 USER’S PERSPECTIVE .. 2-1

3 CLARITY AND READABILITY FROM AN INDEPENDENT MODEL
 DEVELOPER PERSPECTIVE ... 3-1

4 FLEXIBILITY AND ADAPTABILITY FROM A MODEL DEVELOPER
 PERSPECTIVE .. 4-1

5 FUTURE DEVELOPMENT POTENTIAL ... 5-1

6 CONCLUSIONS ... 6-1

7 REFERENCES ... 7-1

iv

FIGURES

Figure Page

3-1 An Example of Documentation Generated Using the Sphinx Python
 Documentation Generator .. 3-4
3-2 An Example of an Embedded and Interactive Class Diagram and Documentation
 Generated Using Epydoc ... 3-4
3-3 Example of Accessing xLPR-SIAM Documentation Generated Using Epydoc 3-6

6-1 Time Estimates for the Cost of Using the GoldSim and SIAM Frames in a 5-Year
 Period, Expressed as Probability Distribution and Cumulative Distribution
 Functions .. 6-8

v

TABLES

Table Page

2-1 Evaluation of Input Data Access .. 2-2
2-2 Evaluation of Code Execution .. 2-3
2-3 Evaluation of Output Data Access ... 2-4

3-1 Code Documentation and Compatibility ... 3-2

4-1 Evaluation of Frame Elements for the Development of Stochastic Models 4-3

5-1 Comparison of Frame Features To Support Future Development 5-1

6-1 Estimate of the Time for GoldSim Use by NRC Staff ... 6-4
6-2 Estimate of the Time for SIAM Use by NRC Staff .. 6-5
6-3 Estimate of Time To Finalize the SIAM Frame .. 6-6

vi

ACKNOWLEDGMENTS

This report describes work performed by the Center for Nuclear Waste Regulatory
Analyses (CNWRA®) for the U.S. Nuclear Regulatory Commission (NRC) under Contract
No. NRC–04–10–144. The activities reported here were performed on behalf of the NRC Office
of Nuclear Regulatory Research. This report is an independent product of CNWRA and does
not necessarily reflect the views or regulatory position of NRC.

The authors would like to thank T. Mintz for the programmatic review; L. Mulverhill for the
editorial review; and L. Naukam for providing word processing support.

QUALITY OF DATA, ANALYSES, AND CODE DEVELOPMENT DATA

DATA: All CNWRA-generated original data contained in this report meet the quality assurance
requirements described in the CNWRA Quality Assurance Manual. Each data source is cited in
this report and should be consulted for determining the level of quality for those cited data.

ANALYSES AND CODES: The analyses presented in this report followed were performed
using the SIAM-xLPR Version 1.0 software (Klashy, et al., 2010) and the xLPR Model
Framework Version 1.0 (GSxLPRv1.02_M02) software (Mattie, et al., 2010). All analyses
performed for this verification and validation report followed the CNWRA Quality Assurance
Procedure–014, Documentation and Verification of Scientific and Engineering Calculations.

References

Klashy, H.B., P.T. Williams, B.R. Bass, and S. Yin. “Structural Integrity Assessments
Modular-Probabilistic Fracture Mechanics (SIAM-PFM): User’s Guide for xLPR.”
ORNL/NRC/LTR-247. Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010.

Mattie, P.D., D.A. Kalinch, and C.J. Sallaberry. “U.S. Nuclear Regulatory Commission
Extremely Low Probability of Rupture Pilot Study: xLPR Framework Model User’s Guide.”
SAND2010-7131. Albuquerque, New Mexico: Sandia National Laboratories. 2010.

1-1

1 INTRODUCTION

The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research has
entered into a cooperative program with the Electric Power Research Institute (EPRI) with the
goal to develop a modular-based, probabilistic fracture mechanics tool or code capable of
determining the probability of failure for reactor coolant system components. This code is
referred to as extremely low probability of rupture (xLPR). The intention of the code is to
encompass a range of physical processes, to be flexible to permit analysis of a variety of
service conditions, and to be adaptable to accommodate evolving and improving knowledge. A
modular design is preferred to allow for additions and modifications.

A pilot study sponsored by NRC and EPRI, and performed by Sandia National Laboratories and
Oak Ridge National Laboratory was conducted as a proof of concept to test (i) the feasibility of
developing probabilistic models for failure mechanisms for a component of the piping coolant
system, (ii) configuration management and quality assurance for multiple-party code
development, and (iii) existing tools for the prompt deployment of probabilistic models (NRC and
EPRI, 2011). The problem of initiation and growth of primary water stress corrosion cracks in a
dissimilar metal pressurizer surge nozzle weld of the piping coolant system in a nuclear power
plant was selected as the subject of the pilot study. To test existing tools for quick
deployment of probabilistic models, the commercial GoldSim® (GoldSim Technology Group
LLC, 2011) software and open source tools [Structural Integrity Assessment
Modular⎯Probabilistic Fracture Mechanics, or SIAM for short) (SIAM-PFM)] were identified to
support a modular development of the xLPR code. GoldSim is a Monte Carlo simulation
software to model dynamic systems. GoldSim has been used to model diverse systems in
radioactive waste management, environmental problems, and business problems. Problems in
risk analysis and reliability engineering have been addressed using GoldSim (GoldSim
Technology Group LLC, 2011). SIAM has been used to deal with problems in vessel fractures,
dislocation-based fracture and cleavage initiation in ferritic steels, and piping reliability including
seismic events (Klasky, et al., 2010). SIAM is intended as a framework to include modern
principles of probabilistic risk assessment to support the analysis of nuclear power plant safety
issues (Klasky, et al., 2010). Reports on xLPR-GoldSim (Mattie, et al., 2010) and xLPR-SIAM
(Klasky, et al., 2010) are available from the model developers, who discuss results of the pilot
study and provide self-assessments of the merits of the GoldSim and SIAM frames.

The objective of this report is to provide an independent assessment of the GoldSim and SIAM
frames to support development of the xLPR code. The evaluation focused on (i) ease of use
from a user perspective, (ii) readability from a model developer perspective, (iii) flexibility and
adaptability from a model developer perspective, and (iv) potential of the frame for expansion of
xLPR. To develop metrics for comparison, proposals were shared and discussed with NRC
staff and representatives from the nuclear power industry; feedback was elicited and
incorporated into the definition of those metrics and approaches to perform the comparison.
The comparison metrics were initially intended to be quantitative. However, as the evaluation
proceeded, it became evident that qualitative and subjective comparisons were not entirely
avoidable. For each comparison element, GoldSim and SIAM were graded according to a
five-star system. For each comparison element, an expected case to which the frame was
compared and graded is briefly described. The comparisons are described in Chapters 2 to 5 of
this report, covering elements (i), (ii), (iii), and (iv) previously listed. The bulk of the sections is
presented in the form of tables. A brief introduction precedes the tables to describe the
comparison approach. Each section concludes with a summary of the main contrasts, findings,
and recommendations for enhancement. Chapter 6 is a concluding analysis section informed

1-2

by findings in Chapters 2 through 5. The concluding analysis includes estimates of the time it
would take for NRC staff to use the frames in the next 5 years under a set of defined
assumptions. Comparing the frames using a metric of time and staff hours allows for contrast
between the frames, which could be used to inform a decision of further model development.

This report includes three appendices. In Appendix A, elements of a robust quality assurance
program are discussed. The configuration management system implemented to support
controlled development of the xLPR codes is considered in Appendix A. Tasks to develop
model validation, in the context of a quality assurance program, are provided in Appendix A.
Appendix B provides results of a limited code verification of FORTRAN modules common to the
xLPR-GoldSim and xLPR-SIAM codes. The verification exercise was implemented as an initial
task to allow the writers of this report to become acquainted with the concepts of the xLPR pilot
study. Appendix C details the approach of inserting a simple module into the xLPR-GoldSim
and xLPR-SIAM codes used as the basis for the evaluation documented in Chapter 4.

2-1

2 CODE EFFICIENCY AND OPERATIONAL CONVENIENCE FROM END
USER’S PERSPECTIVE

The objective of this chapter is to evaluate operational convenience of xLPR-GoldSim and
xLPR-SIAM from the point of view of the end user. Three users were requested to exercise the
xLPR codes, launch a multiple-realization run, and access the output data. The users had
diverse backgrounds with respect to programming, ranging from very experienced to limited
experience. All of the users were use to employing routinely technical software to perform
analyses. The users were asked to evaluate (i) input data access, (ii) code execution, and
(iii) output data access. Under (i) input data access, the users were requested to work with
input parameters and evaluate the convenience of modifying values, modifying distributions,
changing input parameters from constant to distributions or vice versa, and changing the
distribution type from epistemic to aleatory or vice versa. With respect to the epistemic/aleatory
treatment of uncertainty, the xLPR codes were designed to separate parameter value samplings
associated with distributions representing epistemic (or reducible) uncertainty from samplings
associated with distributions representing aleatory (or irreducible) uncertainty. This separate
tracking allows expected values to be computed over the epistemic or aleatory space. In
principle, only the epistemic uncertainty can be reduced with further analyses or experimental
characterization; thus, this type of uncertainty is central in a decision making process. For
further discussion on the epistemic/aleatory split, read the framework reports of Mattie, et al.
(2010) and Klasky, et al. (2010). Under (ii) code execution, the users were requested to
evaluate the convenience of launching a run, identify useful information displayed during code
execution, and record the central processor unit (CPU) runtime for a run with a relatively large
number of realizations (50,000). For (iii) output data access, the users were asked to evaluate
the convenience of locating output for graphical display and generating such graphical displays.
They were also required to evaluate the display of output statistics, the availability of tools to
export data, and the convenience of those tools. The availability of multiple-realization outputs
to use external tools to compute correlation matrices or other sensitivity analysis techniques
was also evaluated. The xLPR codes are distributed with a couple of tools to post-process the
raw output data. These codes are referred to as TRANSFORMERS and EXPECTATION.
TRANSFORMERS modifies the multiple realization output data to account for detection of
cracks during inspection or due to leakage detection. It is assumed that once detection occurs,
the pressurizer surge nozzle weld is repaired and no more cracks develop in the repaired
component. EXPECTATION is a code to compute statistics over aleatory and epistemic
spaces. For example, if 1,000 epistemic realizations and 50 aleatory realizations are
considered, xLPR codes execute a total of 1,000 × 50 = 50,000 realizations. EXPECTATION
computes averages over the aleatory space and consolidates the 50,000 realizations into
1,000 epistemic realizations. Each epistemic realization is an average over 50 aleatory
realizations. The 1,000 realizations represent uncertainty in the output due to the epistemic
uncertainty in the inputs. For a detailed discussion of the TRANSFORMERS and
EXPECTATION codes, see Mattie, et al. (2010). Both xLPR codes use these post-processing
tools, but are executed in a different manner. The convenience of execution of these codes and
the availability of the output data were also considered in the evaluation in this chapter.

The results for (i), (ii), and (iii) are summarized in Tables 2-1 to 2-3. The third column in these
tables represents an expectation used as reference to assign a star grade. A five-star system
was selected, and stars were deducted depending on whether a code was deemed to fall short
of the expectation. The tables identify and briefly discuss strengths and shortcomings.

 2-2

T
ab

le
 2

-1
.

E
va

lu
at

io
n

 o
f

In
p

u
t

D
at

a
A

c
c

es
s

xL

P
R

-G
o

ld
S

im

xL
P

R
-S

IA
M

E

xp
ec

ta
ti

o
n

A

va
il

ab
le

 O
p

ti
o

n
s

fo
r

C
h

a
n

g
in

g
 In

p
u

t
V

al
u

es

 S

tr
en

gt
hs

:

S
im

pl
e

M
ic

ro
so

ft®
 E

xc
el

®
 a

nd
 G

ol
dS

im
®
 d

as
hb

oa
rd

 in
te

rf
ac

e.
 T

he

E
xc

el
 in

te
rf

ac
e

is
 c

on
ve

ni
en

t
to

 p
e

rf
or

m
 e

xt
en

d
ed

 f
un

ct
io

ns
;

(e
.g

.,
E

xc
el

 fi
le

s
ca

n
be

 s
ea

rc
he

d
an

d
fil

te
re

d
b

y
ke

yw
or

ds
, t

hu
s

fa
ci

lit
at

in
g

th
e

lo
ca

tio
n

of
 in

pu
t

pa
ra

m
et

er
s,

 o
r

so
rt

in
g

in
pu

t
pa

ra
m

et
e

rs
 b

y
at

tr
ib

ut
es

.
R

un
s

ca
n

be
 la

un
ch

ed
 a

t s
pe

ci
fie

d
qu

an
til

es
 o

f t
he

 in
pu

t p
ar

am
et

er
s

us
in

g
G

ol
dS

im
 P

R
O

.
 Li

m
ita

tio
ns

:
A

 r
ec

en
t v

er
si

on
 o

f E
xc

el
 is

 r
eq

ui
re

d
fo

r
th

e
m

od
el

 t
o

ru
n.

 E
xc

el
 is

no

t a
cc

es
si

bl
e

w
hi

le
 G

ol
dS

im
 is

 r
un

ni
ng

, e
xc

ep
t b

y
us

in
g

w
o

rk
ar

ou
nd

s.
 C

ha
ng

in
g

di
st

rib
ut

io
n

ty
pe

 (
e.

g.
, f

ro
m

 u
ni

fo
rm

 to

no
rm

al
)

re
qu

ire
s

m
od

el
 c

ha
ng

es
.

T
he

 s
am

e
si

m
ul

at
io

n
se

tt
in

g
ne

ed
s

to
 b

e
de

fin
ed

 in
 m

or
e

th
an

 o
ne

 p
la

ce
 in

 a
 fe

w
 in

st
an

ce
s.

 T
he

 in
pu

t
fil

es
 fo

r
T

R
A

N
S

F
O

R
M

E
R

S
 a

nd
 E

X
P

E
C

T
A

T
IO

N
 a

re
 m

an
ua

lly

co
ns

tr
uc

te
d,

 w
hi

ch
 is

 e
rr

or
 p

ro
ne

 if
 a

 n
on

de
fa

ul
t c

a
se

 is
 e

xe
cu

te
d.

 S

tr
en

gt
hs

:

S
im

pl
e

in
te

rf
ac

e
w

ith
 d

at
a

cl
as

si
fie

d
in

 ta
bs

 a
nd

 o
p

tio
ns

 p
ro

vi
de

d
b

y
pu

lld
ow

n
m

en
us

 in
 a

 G
U

I.
 T

he
 G

U
I f

ul
ly

 c
on

tr
ol

s
re

le
va

nt
 in

pu
ts

 fo
r

po
st

-p
ro

ce
ss

or
s

(T
R

A
N

S
F

O
R

M
E

R
S

 a
nd

 E
X

P
E

C
T

A
T

IO
N

),
 w

hi
ch

av

oi
ds

 u
se

r
er

ro
r.

 Li

m
ita

tio
ns

:
T

he
re

 is
 a

 li
m

ite
d

se
t o

f d
is

tr
ib

ut
io

n
fu

nc
tio

ns
 fo

r
sa

m
pl

in
g.

 T
he

 u
se

of

 lo
ca

tio
n-

sc
al

e-
sh

ap
e

pa
ra

m
et

er
s

is
 n

on
in

tu
iti

ve
 (

e.
g.

, a
 u

ni
fo

rm

di
st

rib
ut

io
n

is
 s

pe
ci

fie
d

by
 th

e
lo

ca
tio

n
an

d
sc

al
e

pa
ra

m
et

e
rs

).
 T

he
re

is

 n
o

op
tio

n
fo

r
g

en
er

at
in

g
st

an
da

rd
 d

et
er

m
in

is
tic

 in
pu

ts
 (

e.
g.

, a
ll

sa
m

pl
ed

 p
ar

am
e

te
rs

 fi
xe

d
at

 g
iv

e
n

qu
an

til
e

or
 m

e
an

 v
al

ue
s)

.
S

uc
h

an
 o

pt
io

n
is

 c
on

ve
ni

en
t f

or
 te

st
in

g.
 D

ef
au

lt
in

pu
t v

a
lu

es
 a

re

ha
rd

-w
ir

ed
.

T
he

 t
im

e
st

ep
s

ar
e

ha
rd

w
ir

ed
.

S
om

e
b

ug
s

ar
e

pr
es

en
t

in
 th

e
da

ta
 in

pu
t.

In
tu

iti
ve

 d
at

a
en

tr
y

in
te

rf
ac

es
 a

nd

si
m

pl
e

in
pu

t c
ha

ng
e

pr
ov

is
io

ns

 T
he

 u
se

r
ca

n
ch

an
ge

 th
e

m
aj

or
ity

 o
f

pa
ra

m
et

e
rs

 a
nd

 d
ef

au
lt

in
pu

ts

 C
om

m
on

 d
is

tr
ib

u
tio

n
fu

nc
tio

ns
 a

re

av
ai

la
bl

e
 B

in
ar

y
co

rr
el

at
io

ns
 c

an
 b

e
sp

ec
ifi

ed

fo
r

co
rr

el
at

e
d

sa
m

pl
in

g
 S

im
pl

e
to

 g
en

er
a

te
 s

ta
nd

ar
d

de
te

rm
in

is
tic

 in
pu

ts
 (

e.
g.

, a
ll

sa
m

pl
ed

pa

ra
m

et
e

rs
 fi

xe
d

 a
t g

iv
en

 q
ua

nt
ile

 o
r

m
ea

n
va

lu
es

)

 S
im

ul
at

io
n

se
tt

in
gs

 a
re

 s
pe

ci
fie

d
in

un

iq
ue

 fi
el

ds

 S
pe

ci
fic

at
io

n
fil

es
 fo

r
po

st
-p

ro
ce

ss
in

g
ar

e
au

to
m

at
ic

al
ly

 g
en

er
at

e
d

C

h
an

g
in

g
 F

ro
m

 C
o

n
s

ta
n

t
to

 D
is

tr
ib

u
ti

o
n

 o
r

V
ic

e
 V

er
sa

 Li

m
ita

tio
ns

:
M

od
ifi

ca
tio

ns
 to

 th
e

m
od

el
 fi

le
 a

re
 n

ee
de

d
to

 c
ha

ng
e

a
pa

ra
m

et
er

fr

om
 c

on
st

an
t t

o
st

oc
ha

st
ic

 o
r

vi
ce

 v
er

sa
.

D
el

et
in

g
ro

w
s

in
 th

e
in

pu
t

da
ta

 E
xc

el
 s

pr
ea

ds
he

et
 r

eq
ui

re
s

re
de

fin
in

g
th

e
E

xc
el

 c
el

l r
ef

er
en

ce
s

in
 th

e
co

rr
es

po
n

di
ng

 G
ol

dS
im

 e
le

m
en

t (
ch

an
ge

s
a

re
 c

um
be

rs
om

e
).

 S

im
pl

e
to

 c
ha

ng
e

fr
om

 s
to

ch
as

tic
 (

sa
m

pl
ed

 p
ar

am
et

er
 to

 c
on

st
an

t
pa

ra
m

et
e

rs
)

or
 v

ic
e

ve
rs

a

S
im

pl
e

to
 c

ha
ng

e
fr

om
 s

to
ch

as
tic

(s

am
pl

ed
 p

ar
am

et
er

 to
 c

on
st

an
t

pa
ra

m
et

e
rs

)
or

 v
ic

e
ve

rs
a

C
h

an
g

in
g

 a
n

 E
p

is
te

m
ic

 P
ar

am
e

te
r

to
 A

le
at

o
ry

 o
r

V
ic

e
V

er
sa

 S

im
pl

e
sw

itc
h

of
fe

re
d

in
 th

e
E

xc
el

 fi
le

 to
 c

ha
ng

e
fr

o
m

 a
le

at
or

y
to

ep

is
te

m
ic

, o
r

vi
ce

 v
er

sa

 S

im
pl

e
pu

lld
ow

n
m

en
u

pr
ov

id
ed

 t
o

sw
itc

h
fr

om
 a

le
at

or
y

to
 e

pi
st

em
ic

or

 v
ic

e
ve

rs
a

S
im

pl
e

to
 c

ha
ng

e
an

y
p

ar
am

et
e

r
fr

om

al
ea

to
ry

 t
o

ep
is

te
m

ic
 o

r
vi

ce
 v

er
sa

G
U

I =
 g

ra
ph

ic
al

 u
se

r
in

te
rf

ac
e

 2-3

T
ab

le
 2

-2
.

E
va

lu
at

io
n

 o
f

C
o

d
e

E
xe

cu
ti

o
n

xL

P
R

-G
o

ld
S

im

xL
P

R
-S

IA
M

E

xp
ec

ta
ti

o
n

L

au
n

ch
 a

 R
u

n

 S

im
pl

e
to

 s
et

 in
pu

t f
la

gs
 (

th
ro

ug
h

th
e

da
sh

bo
ar

d)
.

Ic
on

 a
va

ila
bl

e
to

la

un
ch

 a
 r

un
.

R
u

n
ca

n
be

 p
au

se
d

if
ne

ed
ed

 a
nd

 r
e

st
ar

te
d

ea
si

ly
.

T
he

re
 is

 a
n

op
tio

n
fo

r
la

un
ch

in
g

a
ru

n
fr

om
 t

he
 c

om
m

an
d

lin
e.

 W

el
l-o

rg
an

iz
ed

 r
un

-e
xe

cu
tio

n
ta

b.
 L

au
nc

hi
ng

 a
 r

u
n

is

st
ra

ig
ht

fo
rw

a
rd

.
T

he
re

 is
 a

n
op

tio
n

fo
r

la
un

ch
in

g
a

ru
n

fr
om

 t
he

co

m
m

an
d

lin
e.

La
un

ch
in

g
a

ru
n

is
 in

tu
iti

ve
 a

nd

si
m

p
le

In
fo

rm
at

io
n

 D
is

p
la

y
D

u
ri

n
g

 a
 R

u
n

 S

tr
en

gt
hs

:

P
ol

is
he

d
di

sp
la

y
of

 r
un

 in
fo

rm
at

io
n.

 T
he

 e
la

ps
ed

 ti
m

e
fo

r
a

ru
n

is

sa
ve

d
w

ith
 th

e
m

od
el

 fi
le

. D
as

hb
oa

rd
 e

le
m

en
ts

 u
se

d
to

 d
is

pl
ay

 s
om

e
in

di
ca

to
rs

 (
e.

g.
,

C
ra

ck
s

F
or

m
ed

,
C

ra
ck

s
C

oa
le

sc
ed

,
S

ur
fa

ce
 C

ra
ck

s,

T
hr

ou
g

h
W

al
l C

ra
ck

s,
 L

ea
k

R
at

e)
.

T
he

re
 is

 a
 g

re
e

n
bu

tto
n

in
 th

e
da

sh
bo

ar
d

th
at

 s
ig

na
ls

 a
 p

ip
e

ru
pt

ur
e

ev
en

t a
nd

 t
h

e
tim

e
of

 th
e

ev
en

t.
 R

es
ul

t e
le

m
en

ts
 c

an
 d

is
pl

a
y

re
su

lts
 fo

r
a

re
al

iz
at

io
n

in
 r

ea
l

tim
e,

 if
 th

e
y

ar
e

o
pe

ne
d

be
fo

re
 th

e
 r

un
 is

 la
un

ch
ed

.
 Li

m
ita

tio
ns

:
T

he
 in

fo
rm

at
io

n
di

sp
la

ye
d

b
y

re
al

iz
at

io
n

is
 c

on
st

ra
in

ed
 if

 th
e

m
od

el
 is

la

un
ch

ed
 in

 p
ar

al
le

l p
ro

ce
ss

in
g

m
od

e

 S

tr
en

gt
hs

:

O
ut

pu
t l

eg
ib

le
.

S
cr

ee
n

ou
tp

ut
s

de
si

gn
ed

 to
 d

ia
gn

o
se

 p
ro

bl
em

s.

 Li
m

ita
tio

ns
:

N
o

au
to

m
at

ic
 s

av
in

g
of

 th
e

ru
nt

im
e

in
 a

 r
ea

di
ly

 a
cc

es
si

bl
e

lo
ca

tio
n/

in
te

rf
ac

e
th

at
 is

 p
er

si
st

en
t (

sa
ve

d
w

ith
 th

e
pr

oj
ec

t f
ile

re

su
lts

).
 N

o
di

sp
la

y
of

 ti
m

e
of

 la
u

nc
h

an
d

el
ap

se
d

tim
e

th
at

 is
 v

is
ib

le

du
rin

g
th

e
en

tir
e

ru
n.

D
is

pl
ay

 in
fo

rm
at

io
n

to
 m

on
ito

r
a

ru
n:

ex

ec
ut

io
n

tim
e,

 r
ea

liz
at

io
n

nu
m

be
r,

er

ro
r

m
es

sa
ge

s
an

d
w

ar
ni

ng
s

 K

e
y

in
fo

rm
at

io
n

is
 s

av
ed

 w
ith

 th
e

m
od

el
 fi

le
 o

r
in

 lo
g

fil
es

C
P

U
 T

im
e

fo
r

5
0,

00
0

R
ea

liz
a

ti
o

n
s

(H
o

u
rs

)
C

o
m

p
u

te
r

S
p

ec
s

10
:1

7
hr

 +
 9

:2
0

h
r

fo
r

da
ta

 e
xp

or
t

6:
17

 h
r

fo
r

pa
ra

lle
l r

un
 o

n
tw

o
C

P
U

s
5:

38
 h

ou
rs

 (
ru

n
+

 d
at

a
ex

po
rt

)
W

in
do

w
s

X
P

, I
nt

el
 C

or
e

D
uo

 C
P

U
 @

2.

67
 G

H
z;

 R
A

M
 2

G
B

; 3
2

-b
it

5:
15

 h
r

+
 2

:0
4

hr
 f

or
 d

at
a

e
xp

o
rt

3:

39
 h

ou
rs

 (
ru

n
+

 d
at

a
ex

po
rt

)
W

in
do

w
s

7,
 In

te
l®

 C
or

e
™

 i7
 C

P
U

 8
60

@

 2
.8

 G
H

z;
 R

A
M

 4
G

B
; 3

2
-b

it
5:

08
 h

r
+

 2
:0

4
hr

 f
or

 d
at

a
e

xp
o

rt

1:
42

 h
r

fo
r

pa
ra

lle
l r

un
 o

n
fo

u
r

C
P

U
s

3:
46

 h
ou

rs
 (

ru
n

+
 d

at
a

ex
po

rt
)

W
in

do
w

s
7,

 In
te

l®
 C

or
e

™
 i7

 C
P

U
 8

70

@
 2

.9
3

G
H

z;
 R

A
M

 4
G

B
; 3

2
-b

it
6:

41
 h

r
+

 2
:0

0
hr

 f
or

 d
at

a
e

xp
o

rt

4:
36

 h
ou

rs
 (

ru
n

+
 d

at
a

ex
po

rt
)

W
in

do
w

s
X

P
, I

nt
el

 C
or

e2
 d

uo
,

3
G

H
z;

R

A
M

 3
G

B
; 3

2
-b

it

 2-4

T
ab

le
 2

-3
.

E
va

lu
at

io
n

 o
f

O
u

tp
u

t
D

at
a

A
c

ce
s

s

xL
P

R
-G

o
ld

S
im

xL

P
R

-S
IA

M

E
xp

ec
ta

ti
o

n

L
o

ca
ti

n
g

 D
at

a
fo

r
G

ra
p

h
ic

 D
is

p
la

y

 S

tr
en

gt
hs

:

R
el

ev
an

t o
ut

pu
t

da
ta

 a
re

 t
ra

ck
ed

 in
 a

 d
as

hb
oa

rd
 a

nd
 lo

gi
ca

lly

or
ga

ni
ze

d.
 E

le
m

en
ts

 in
 th

e
m

od
el

 p
ro

vi
de

 a
dd

iti
on

al
 d

at
a

fo
r

gr
ap

hi
c

di
sp

la
y,

 w
hi

ch
 c

an
 b

e
re

tr
ie

ve
d

af
te

r
ex

ec
ut

io
n,

 if
 n

ee
de

d.

G
ol

dS
im

 e
le

m
en

ts
 c

an
 b

e
“c

he
ck

ed
”

to
 s

to
re

 m
ul

tir
ea

liz
at

io
n

da
ta

.

 S

tr
en

gt
hs

:

T
he

 r
es

ul
ts

 a
re

 c
on

ve
ni

en
tly

 g
ro

u
pe

d
af

te
r

e
xe

cu
tio

n
of

 th
e

po
st

-
pr

oc
es

si
ng

 to
ol

.

G
ra

p
hi

c
el

em
en

ts
 c

an
 b

e
ea

si
ly

 lo
ca

te
d

 R
es

ul
ts

 a
re

 lo
gi

ca
lly

 g
ro

up
ed

G
en

er
a

ti
n

g
 a

 G
ra

p
h

ic
 D

is
p

la
y

 S

tr
en

gt
hs

:

G
en

e
ra

tin
g

pl
ot

s
is

 s
tr

ai
gh

tfo
rw

ar
d

, w
ith

 th
e

cl
ic

k
of

 a
 b

ut
to

n
or

 a

re
su

lts
 e

le
m

en
t.

 G
ra

p
hi

c
di

sp
la

ys
 p

ro
vi

de
 c

om
pl

et
e

co
nt

ro
l o

f t
he

pl

ot
 a

pp
ea

ra
nc

e.
 C

on
ve

ni
en

t o
pt

io
ns

 a
re

 p
ro

vi
de

d
 to

 c
re

at
e

gr
ap

hi
ca

l f
ile

s
(e

.g
.,

 jp
g)

.

 S

tr
en

gt
hs

:

G
en

e
ra

tin
g

pl
ot

s
is

 s
tr

ai
gh

tfo
rw

ar
d

, v
ia

 a
 p

ul
ld

ow
n

m
en

u
an

d
cl

ic
ki

ng
 a

re

fr
es

h
bu

tt
on

.
A

n
op

tio
n

is
 p

ro
vi

de
d

to
 c

re
at

e
a

gr
ap

hi
ca

l f
ile

 in
 P

D
F

fo

rm
at

.
 Li

m
ita

tio
ns

:

T
he

re
 a

re
 n

o
co

n
tr

ol
s

fo
r

ch
an

gi
ng

 p
lo

tti
ng

 o
pt

io
ns

, o
th

er
 th

an
 a

 s
w

itc
h

fr
om

 li
ne

ar
 to

 lo
g

ar
ith

m
ic

 s
ca

le
.

T
he

 u
se

r
m

us
t s

el
ec

t t
he

 r
ef

re
sh

op

tio
n

to
 u

pd
at

e
pl

ot
 w

h
en

 a
 n

e
w

 p
ar

am
et

e
r

is
 s

el
ec

te
d

fr
om

 a

pu
lld

ow
n

m
en

u.

S
IA

M
 g

ra
ph

ic
 d

is
pl

a
y

de
pe

n
ds

 o
n

ou
tp

ut
s

fr
om

T

R
A

N
S

F
O

R
M

E
R

S
 a

nd
 E

X
P

E
C

T
A

T
IO

N
,

w
hi

ch
 m

a
y

no
t b

e
de

fin
ed

in

 c
as

e
of

 a
 d

et
er

m
in

is
tic

 o
ut

pu
t.

 P
lo

ts
 fr

om
 d

et
er

m
in

is
tic

 r
un

s
ar

e
no

t a
va

ila
bl

e.

G
ra

p
hi

c
di

sp
la

ys
 a

ut
om

at
ic

al
ly

ge

ne
ra

te
d

 fo
r

se
le

ct
ed

 o
ut

pu
ts

 w
ith

m

in
or

 u
se

r
ac

tio
n

 G

ra
p

hi
c

di
sp

la
ys

 a
re

 a
va

ila
bl

e
fo

r
pr

ob
ab

ili
st

ic
 a

nd
 d

et
er

m
in

is
tic

 o
ut

pu
ts

.
F

or
 p

ro
b

a
b

ili
st

ic
 d

is
p

la
ys

,
st

a
tis

tic
s

(e
.g

.,
qu

an
til

es
 o

r
m

ea
ns

)
ca

n
be

di

sp
la

ye
d

 C

on
tr

ol
s

ar
e

p
ro

vi
de

d
to

 c
ha

ng
e

ap
pe

ar
an

ce
,

ad
d

 la
be

ls
, a

nd
 s

w
itc

h
be

tw
ee

n
lin

ea
r

a
nd

 lo
ga

rit
hm

ic
 s

ca
le

s
 Le

ge
nd

s
fo

r
pl

ot
s

w
ith

 m
ul

tip
le

 c
ur

ve
s

ar
e

cl
ea

r
 O

pt
io

ns
 a

re
 p

ro
vi

de
d

to
 e

xp
or

t p
lo

ts
 in

 a

gr
ap

hi
c

fo
rm

at
 fi

le
 (

e.
g.

, j
pg

, t
iff

, p
df

)
D

is
p

la
yi

n
g

 S
ta

ti
st

ic
s

(M
ea

n
,

Q
u

ar
ti

le
s)

 S

tr
en

gt
hs

:

E
ff

ic
ie

nt
 d

is
pl

ay
 o

f s
ta

tis
tic

s
fo

r
ra

w
 (

co
m

bi
ne

d
al

e
at

or
y

an
d

ep
is

te
m

ic
)

da
ta

.
A

de
qu

at
e

co
nt

ro
l o

n
th

e
ap

pe
ar

an
ce

 o
f t

he
 s

ta
tis

tic

cu
rv

es
 a

nd
 c

on
fid

en
ce

 in
te

rv
al

s.

 Li
m

ita
tio

ns
:

C
om

pu
ta

tio
n

of
 s

ep
ar

at
ed

 s
ta

tis
tic

s
ov

er
 a

le
at

or
y

a
nd

 e
pi

st
em

ic

sp
ac

es
 r

eq
ui

re
s

po
st

-p
ro

ce
ss

in
g

to
ol

s.
 T

hi
rd

-p
a

rt
y

so
ftw

a
re

 is

ne
ed

ed
 to

 r
ea

d
o

ut
pu

t f
ile

s
fr

om
 p

os
t-

pr
oc

es
si

ng
 a

nd
 g

ra
ph

ic

di
sp

la
y.

 S

tr
en

gt
hs

:

S
ta

tis
tic

al
 d

is
pl

ay
s

ar
e

av
ai

la
bl

e.
 T

he
 g

ra
ph

ic
 d

is
pl

a
ys

 u
se

 o
ut

pu
ts

fr

om
 T

R
A

N
S

F
O

R
M

E
R

S
 a

nd
 E

X
P

E
C

T
A

T
IO

N
 p

os
t-

pr
oc

es
si

ng
.

T
h

us
,

th
e

gr
ap

hi
c

di
sp

la
ys

 s
ho

w
 s

ta
tis

tic
s

ov
er

 th
e

ep
is

te
m

ic
 s

pa
ce

.
 Li

m
ita

tio
ns

:
H

or
se

-t
ai

l p
lo

ts
 a

re
 n

ot
 a

va
ila

bl
e.

 G
ra

p
hi

c
di

sp
la

ys
 o

ve
r

th
e

ra
w

pa

ra
m

et
e

r
sp

ac
e

(c
om

bi
ne

d
ep

is
te

m
ic

 a
nd

 a
le

at
or

y)
 a

re
 n

ot
 a

va
ila

b
le

.
It

ta
ke

s
a

lo
ng

 ti
m

e
fo

r
gr

ap
hi

c
di

sp
la

ys
 to

 b
e

 g
en

er
at

ed
 (

ho
w

ev
er

,
fil

es
 c

on
ta

in
in

g
pr

ec
om

pu
te

d
st

at
is

tic
s

ar
e

sm
al

l i
n

si
ze

).
 I

t a
pp

ea
rs

th

at
 s

ta
tis

tic
s

ar
e

co
m

pu
te

d
on

 d
e

m
an

d
fr

om
 th

e
E

X
P

E
C

T
A

T
IO

N

ep
is

te
m

ic
 o

ut
pu

t f
ile

s.
 T

he
re

 a
re

 n
o

pl
ot

s
fo

r
di

st
rib

ut
io

ns
 o

r
cu

m
ul

at
iv

e
di

st
rib

ut
io

ns
 o

f s
in

gl
e-

va
lu

e
ou

tp
ut

s
(a

 t
em

pl
at

e
w

as

pr
ov

id
ed

 in
 E

xc
el

 to
 p

lo
t r

es
ul

ts
, w

hi
ch

 is
 n

ot
 v

er
y

u
se

fu
l g

iv
en

 th
e

si
gn

ifi
ca

nt
 u

se
r

in
te

ra
ct

io
n

re
qu

ir
ed

 a
nd

 th
at

 it
 d

o
es

no

t a
cc

ou
nt

 fo
r

th
e

ep
is

te
m

ic
-a

le
at

or
y

sa
m

pl
in

g
sc

he
m

e)
.

F
or

 p
ro

ba
bi

lis
tic

 r
un

s,
 p

lo
ts

 s
ho

w
 m

ea
n,

qu

ar
til

es
, a

nd
 in

di
vi

du
al

 r
ea

liz
at

io
ns

(h

or
se

-t
ai

l p
lo

ts
)

 P
lo

ts
 a

re
 g

en
er

at
ed

 in
 a

 r
ea

so
na

bl
e

tim
e

 P
lo

ts
 s

ho
w

 m
ea

n
in

gf
ul

 s
ta

tis
tic

s
(i.

e.
, s

ta
tis

tic
s

sp
lit

 o
ve

r
al

ea
to

ry
 o

r
ep

is
te

m
ic

 s
pa

ce
, o

r
ra

w
 d

at
a

st
at

is
tic

s)

 P
lo

ts
 (

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

or

cu
m

ul
at

iv
e

di
st

rib
ut

io
ns

)
ar

e
av

ai
la

bl
e

fo
r

si
ng

le
-v

al
ue

 o
ut

pu
ts

 fr
om

m

ul
tip

le
 r

ea
liz

at
io

ns

 2-5

T
ab

le
 2

-3
.

E
va

lu
at

io
n

 o
f

O
u

tp
u

t
D

at
a

A
c

ce
s

s
(C

o
n

ti
n

u
ed

)
xL

P
R

-G
o

ld
S

im

xL
P

R
-S

IA
M

E

xp
ec

ta
ti

o
n

T

o
o

ls
 T

o
 E

xp
o

rt
 D

at
a

 A

 b
ut

to
n

is
 a

va
ila

bl
e

to
 e

xp
o

rt
 d

at
a

as
 a

 te
xt

 fi
le

 A

 b
ut

to
n

is
 a

va
ila

bl
e

to
 e

xp
o

rt
 d

at
a

as
 a

 te
xt

 fi
le

D
at

a
ar

e
co

nv
en

ie
nt

ly
 e

xp
or

te
d

fr
om

gr

ap
hi

c
di

sp
la

ys

E
xp

o
rt

e
d

 D
a

ta
 F

o
rm

at

 D
at

a
ar

e
ex

p
or

te
d

in
 m

at
rix

 fo
rm

 t
ha

t c
an

 b
e

di
re

ct
ly

 im
po

rt
ed

 t
o

E
xc

el
 o

r
ot

he
r

an
al

yt
ic

al
 s

of
tw

ar
e

.
 N

o
pr

op
rie

ta
ry

 f
or

m
at

s
ar

e
us

ed
.

 D

at
a

ex
po

rt
e

d
in

 te
xt

 fo
rm

 th
at

 c
a

n
be

 im
po

rt
ed

 in
to

 E
xc

el
.

N
o

pr
op

rie
ta

ry
 f

or
m

a
ts

 a
re

 u
se

d.

 Li

m
ita

tio
n

:
T

he
 fo

rm
at

 o
f t

he
 o

ut
pu

t d
at

a
n

ee
ds

 a
dd

iti
on

al
 m

an
ip

ul
at

io
n

to
 b

e
pl

ot
te

d
in

 e
xt

e
rn

a
l s

of
tw

ar
e.

 D
at

a
fr

om
 p

lo
ts

 c
on

ta
in

in
g

m
ul

tip
le

se

rie
s

ar
e

lis
te

d
in

 th
e

fo
rm

 o
f b

lo
ck

s
(x

,y
)

a
s

o
p

p
o

se
d

 t
o

 a
 m

a
tr

ix

w
ith

 m
ul

tip
le

 c
ol

um
ns

.

F
or

m
at

 o
f

ou
tp

ut
 d

at
a

is
 c

on
ve

ni
en

t t
o

be
 im

po
rt

ed
 to

 o
th

er
 p

lo
tti

ng
 o

r
an

al
yt

ic
al

 s
of

tw
a

re
 (

e.
g.

, E
xc

el
, M

at
la

b,

M
at

he
m

at
ic

a)

A
va

il
ab

ili
ty

 o
f

D
at

a
T

o
 S

u
p

p
o

rt
 S

en
si

ti
vi

ty
 A

n
al

ys
e

s

 G

ol
dS

im
 in

cl
ud

es
 to

ol
s

to
 c

on
du

ct
 s

en
si

tiv
ity

 a
na

ly
se

s
an

d
co

m
pu

te

co
rr

el
at

io
n

co
ef

fic
ie

nt
s.

 C
or

re
la

tio
n

m
at

ric
es

 w
ou

ld
 h

av
e

lim
ite

d
va

lu
e

gi
ve

n
th

e
al

ea
to

ry
-e

pi
st

em
ic

 s
pl

it.

 Li
m

ita
tio

ns
:

D
at

a
ar

e
av

ai
la

bl
e

to
 s

up
po

rt
 e

xt
e

rn
al

 s
en

si
tiv

ity
 a

n
al

ys
es

; h
o

w
ev

er
,

th
e

m
od

el
 fi

le
 m

us
t b

e
ad

ju
st

ed
 to

 g
et

 th
e

in
pu

t s
am

pl
ed

 v
al

ue
s

an
d

to
 p

ar
se

 th
e

in
pu

t p
ar

am
et

e
rs

 in
to

 e
pi

st
em

ic
 o

r
al

ea
to

ry
 s

et
s.

 S
uc

h

ad
ju

st
m

en
ts

 to
 th

e
m

od
el

 fi
le

 c
an

 b
e

cu
m

be
rs

om
e.

 S

tr
en

gt
hs

:

S
am

pl
ed

 p
ar

am
e

te
r

va
lu

es
 a

re
 s

e
pa

ra
te

d
in

to
 a

le
a

to
ry

 a
nd

 e
pi

st
em

ic

se
ts

.
T

hi
s

in
fo

rm
at

io
n,

 c
om

bi
ne

d
w

ith
 in

fo
rm

at
io

n
fr

om
 th

e
E

X
P

E
C

T
A

T
IO

N
 t

oo
l a

llo
w

s
pe

rf
o

rm
in

g
se

ns
iti

vi
ty

 a
na

ly
se

s
ov

er
 th

e
ep

is
te

m
ic

 s
pa

ce
.

D
at

a
ne

ed
e

d
fo

r
co

m
pu

tin
g

co
rr

el
at

io
n

m
at

ric
es

, p
er

fo
rm

in
g

re
gr

es
si

on

an
al

ys
es

, o
r

co
n

du
ct

in
g

ot
he

r
e

xt
er

na
l

se
ns

iti
vi

ty
 a

na
ly

si
s

ar
e

re
ad

ily
 a

va
ila

bl
e

(e
.g

.,
th

e
va

lu
es

 o
f s

am
pl

ed
 in

pu
t

pa
ra

m
et

e
rs

 a
nd

 m
ul

tip
le

 r
ea

liz
at

io
n

ou
tp

ut
s)

 D
at

a
ar

e
av

ai
la

bl
e

to
 s

up
po

rt
 s

en
si

tiv
ity

an

al
ys

es
 o

ve
r

th
e

ep
is

te
m

ic
 s

pa
ce

2-6

Discussion and Recommendations

From the end-user perspective, there is no high contrast in the ranking of the codes with respect
to the considered star systems. xLPR-GoldSim and xLRP-SIAM codes present different
advantages and disadvantages. xLPR-GoldSim provides polished interfaces and plotting
options. However, xLPR-GoldSim lacks flexibility to perform a number of actions
(e.g., embedded post-processing, limitations to manipulate inputs, cumbersome to extract data
for sensitivity analyses). The runtime for xLPR-GoldSim is at least twice as long compared to
xLPR-SIAM, accounting for time needed for data export. The runtime can be shortened
significantly by taking advantage of parallel processing spanning the realizations among up to
four CPUs using GoldSim Pro (more than four processors can be enabled by GoldSim’s
Distributed Processing Module, at an additional cost). The total time (runtime plus data export
time), accounting for distributed processing in several CPUs, is at best comparable to the
xLPR-SIAM runtime. Note that a number of factors seem to affect the total runtime in
xLPR-GoldSim, including the amount of RAM memory, CPU frequency, hard drive spin
frequency, and the hard drive hardware interface (IDE or SATA). The data export time can take
several hours, and parallel processing cannot be used to reduce it. Other strategies could be
designed to capture outputs during runtime using dynamically linked libraries to address the
lengthy data export time.

xLPR-SIAM offers flexibility, but its graphical user interface (GUI) is less polished and it lacks
plotting options. In principle, all of the xLPR-SIAM limitations noted in Tables 2-1 through 2-3
can be addressed with programming effort. In contrast, the xLPR-GoldSim limitations are
mostly intrinsic to the GoldSim frame and may not be solved except by changes by
GoldSim developers.

General Recommendations

During this evaluation, it was noted that both codes implement only binary correlations for input
parameters. None of the codes have the capability to sample ternary or higher correlation
systems. For example, to completely define a system with three correlated variables, A, B,
and C, the following correlations need to be specified: correlation (A, B), correlation (B, C), and
correlation (A, C). However, one and only one of these correlations can be currently specified in
the xLPR codes; thus, the definition of correlations is incomplete and it is not possible to
properly generate correlated samples. Consideration could be given to other sampling
algorithms that provide flexibility to fully specify correlation or covariance matrices. Sandia’s
Latin Hypercube Sampling Software (Swiler and Wyss, 2004) is an available tool that allows for
complete definition of covariance matrices. This code is distributed as part of the DAKOTA
Project (dakota.sandia.gov), which also includes other tools for optimization, parameter
estimation, and sensitivity analyses. The current release of DAKOTA is Version 5.1
(Adams, et al., 2010).

The specification files for the TRANSFORMERS and EXPECTATION tools (i.e., options.txt and
EXP_options.txt, respectively) require a different number of text rows depending on the case
considered. This type of approach is inconvenient because the user is forced to consult the
user guide to make sure that the appropriate entries were provided in the input files options.txt
and EXP_options.txt. Instead, it is recommended to fix the number of input lines in these files,
properly labeling the entries. It should be clear to the user that some of the inputs are used only
if needed by the case under consideration. Currently, xLPR-SIAM generates the appropriate
files options.txt and EXP_options.txt from data input in the GUI. xLPR-GoldSim, on the other
hand, needs manual modification of those files, which is error prone. The errors can be

2-7

minimized by fixing the number of lines in the input files options.txt and EXP_options.txt. Also,
some entries in these files could be controlled by entries in the dashboards (e.g., number of
stochastic and aleatory realizations) and dynamically linked libraries (DLL).

The output files from EXPECTATION do not include headers. Readability of these output files
will be enhanced by the addition of headers. In particular, in the statistics files (files with a
_stat.txt suffix), the inclusion of headers to properly identify columns associated with mean
values and quantiles will help the user eliminate the extra step of consulting the user guide and
additional input file defining the quantiles (i.e., quantiles.txt). Also, a standard deviation column
is recommended to be added to the statistics files.

xLPR-GoldSim Recommendations

• Allow some control of input files to the TRANSFORMERS and EXPECTATION codes from

the GoldSim dashboard, via DLLs. This approach would minimize user error.

• Consider developing a DLL to capture realization data to alleviate the problem of extended

export time. For example, a time-series output can be captured into a text file, after a
realization is completed. A time series per realization would be appended to the text file
as a new row of data. This approach can be an efficient alternative to data exporting.
Such an approach may not significantly decrease the code efficiency and yet will bypass
the need for manual data export. The disadvantage of this approach is that it does not
work for parallel runs spanning several processors. Also, the matrix of data in the text files
would need transposing before use in the TRANSFORMERS code.

xLPR-SIAM Recommendations

• Expand the set of distributions for sampling. Currently, only a small set of distributions

is available.

• Provide an option to generate standard deterministic inputs (e.g., all sampled parameters

fixed at given quantile or mean values).

• Explain in the user guide how scale-shape-location parameters map to standard

parameters to define distributions.

• Provide information on the total run time while the run is executed. Save the total

execution time in a log file.

• Allow for plots (cumulative distribution and probability density) of single-value outputs per

realization to eliminate the need of the Microsoft® Excel® template file. Perform
appropriate statistics for the single-value outputs accounting for the epistemic-aleatory
sampling scheme.

• Expose plotting options. The graphics appear to be generated using the Qwt

(Rathmann, 2011) library [with PyQwt (Vermeulen, 2011)], which is a library with a range
of plotting options.

• Allow for automatic refresh of plots (e.g., when different data are selected from the

pulldown menu).

2-8

• Allow for plotting of deterministic outputs.

• Include horse-tail plots and plots of raw data.

• Enhance the format of output data (matrix with multiple columns) exported from the

visualization results window.

3-1

3 CLARITY AND READABILITY FROM AN INDEPENDENT MODEL
DEVELOPER PERSPECTIVE

This section is aimed at enabling testers who are experienced programmers to comment on
clarity and readability of the source codes to support code maintenance. Programmers with
variable knowledge of GoldSim, Python, and FORTRAN were requested to study xLPR source
codes and record the time needed to gain enough familiarity with the xLPR algorithms to
implement basic changes to the model. Three programmers were asked to study the source
codes of the xLPR-GoldSim to attempt specific model modifications, detailed in Chapter 4. Out
of the three programmers, only one was able to implement those modifications within a
reasonable amount of time (a maximum time was set a priori to avoid project overruns in
schedule and budget). This programmer succeeded within the limited time because he had
previous knowledge of both GoldSim and Python (main language for SIAM). The successful
programmer estimated that it took him approximately 25 hours to gain basic familiarity with
xLPR-GoldSim to initiate implementation of model changes. For xLPR-SIAM, the programmer
estimated 57 hours would be needed to gain enough familiarity to start working on the source
code. The programmer attributed the longer familiarity time for xLPR-SIAM to the need to work
with two languages (FORTRAN and Python) and several Python libraries [e.g., PyQT
(Riverbank Computing Limited, 2011)]. On the other hand, xLPR-GoldSim only needs some
familiarity with GoldSim and FORTRAN languages. The other programmers indicated it would
take them much longer because they needed to gain required knowledge of FORTRAN, Python,
Python libraries, and GoldSim before comfortably implementing changes to the codes.
Estimates of the time needed to gain familiarity with the codes are recorded in Chapter 4 and
also used in the cost computations in Chapter 6.

The programmers were also asked to evaluate (i) existing internal documentation, (ii) capability
of the frame to incorporate and retrieve internal documentation, (iii) operating system
compatibility, and (iv) programming language compatibility (GoldSim or SIAM). Evaluation
results are recorded in Table 3-1. A five-star system similar to Chapter 2 is adopted in this
chapter. The Expectation column defines the attributes to assign the star grade.

Discussion and Recommendations

xLPR–GoldSim

The xLPR-GoldSim model is readable (i.e., it is possible to follow the model logic and the
computational sequence). xLPR-GoldSim is visually organized in a manner that the flow of
information becomes clear. The readability is facilitated by visual aids (e.g., customized icons,
graphics, and influence arrows), the “function of” and “affects” view trees to identify GoldSim
element dependencies, as well as the various browsing capabilities (e.g., GoldSim allows
browsing of elements by type). Many options are available to provide internal documentation:
text boxes, text per GoldSim element, hyperlinks, visual elements (diagrams/drawings/plot), and
customized icons. Extra effort should be aimed at taking advantage of internal documentation
capabilities, describing the action of GoldSim elements, and briefly explaining the computations
at the GoldSim container level. A GoldSim container is a box icon that groups a number of
computations in a single workspace.

Note that model readability was compromised in some instances by adapting the limited
GoldSim elements to perform specialized functions. For example, dealing with arrays to
separately track cracks and their properties, such as crack length, depth, and type (i.e., surface

 3-2

T
ab

le
 3

-1
.

C
o

d
e

 D
o

cu
m

e
n

ta
ti

o
n

 a
n

d
 C

o
m

p
at

ib
il

it
y

xL
P

R
-G

o
ld

S
im

xL

P
R

-S
IA

M

E
xp

ec
ta

ti
o

n

E
xi

st
in

g
 In

te
rn

a
l D

o
cu

m
e

n
ta

ti
o

n

 S

tr
en

gt
hs

:

“F
un

ct
io

n
of

”
an

d
 “

af
fe

ct
s”

 n
at

iv
e

G
ol

dS
im

 fu
nc

tio
ns

, i
nf

lu
en

ce

ar
ro

w
s,

 a
n

d
th

e
vi

su
al

 o
rg

an
iz

at
io

n
of

 m
od

el
 e

le
m

e
nt

s
fa

ci
lit

at
e

un
de

rs
ta

nd
in

g
of

 th
e

flo
w

 o
f i

nf
or

m
at

io
n,

 w
ith

 m
in

im
al

 e
xt

ra

do
cu

m
en

ta
tio

n
n

ee
de

d.
 F

ra
m

e
al

lo
w

s
br

o
w

si
ng

 G
ol

dS
im

 e
le

m
en

ts

b
y

ty
pe

.
 Li

m
ita

tio
ns

:
M

in
im

al
 in

te
rn

al
 d

oc
um

en
ta

tio
n

(d
e

sc
rip

tio
n

fie
ld

s
b

y
el

em
en

t a
re

m

in
im

al
ly

 p
op

ul
a

te
d)

 is
 a

va
ila

bl
e.

 I
n

ge
ne

ra
l,

do
cu

m
en

ta
tio

n
ca

pa
bi

lit
y

w
as

 n
o

t t
ak

en
 a

dv
an

ta
g

e
of

.

 Li

m
ita

tio
ns

:
O

nl
y

fe
w

 c
la

ss
/fu

nc
tio

n
do

cs
tr

in
gs

 h
av

e
fu

ll
en

tr
ie

s.
 E

xa
m

pl
es

 o
f t

h
e

us
e

of
 fu

nc
tio

ns
 a

re
 n

ot
 p

ro
vi

de
d.

U

se
 o

f “
H

el
p”

 o
pt

io
n

fo
r

br
o

w
si

n
g

“S
IA

M
-x

LP
R

 A
P

I”
 d

oc
um

en
ta

tio
n

fo
r

vi
ew

in
g

cl
as

s
an

d
m

od
ul

e
hi

er
ar

ch
ie

s
is

 a
va

ila
bl

e,
 b

ut
 th

e
av

ai
la

bl
e

in
fo

rm
at

io
n

is
 li

m
ite

d.
 T

he

us
ef

ul
ne

ss
 o

f S
IA

M
-x

LP
R

 A
P

I
do

cu
m

en
ta

tio
n

ca
n

be
 g

re
at

ly

im
pr

ov
ed

 b
y

p
op

ul
at

in
g

do
cs

tr
in

gs
 a

nd
 ta

ki
ng

 a
dv

an
ta

ge
 o

f o
pt

io
ns

av

ai
la

bl
e

fr
om

 th
e

A
P

I d
oc

um
en

ta
tio

n-
ge

ne
ra

tin
g

so
ft

w
ar

e.

T
hi

s
co

de
 is

 w
el

l d
oc

um
en

te
d

in
te

rn
al

ly
,

w
ith

 c
o

m
m

en
ts

 a
llo

w
in

g

th
e

pr
og

ra
m

m
er

 t
o

un
de

rs
ta

nd
 t

he

ac
tio

n
of

 fu
nc

tio
ns

 a
nd

 th
e

flo
w

 o
f

co
m

pu
ta

tio
ns

 a
nd

 in
fo

rm
at

io
n.

 T

he
 c

od
e

in
cl

ud
es

 e
no

ug
h

co
m

m
e

nt
s

ei
th

er
 e

m
be

dd
ed

 in
 th

e
m

od
el

 o
r

lo
ca

te
d

in
 th

e
el

ec
tr

on
ic

 fi
le

 s
tr

uc
tu

re

to
 u

nd
er

st
an

d
th

e
flo

w
 o

f i
nf

or
m

at
io

n
w

ith
in

 th
e

so
u

rc
e

co
de

.

C
ap

ab
ili

ty
 o

f
F

ra
m

e
T

o
 In

c
o

rp
o

ra
te

 a
n

d
 R

e
tr

ie
ve

 In
te

rn
al

 D
o

cu
m

en
ta

ti
o

n

 S

tr
en

gt
hs

:
M

ul
tip

le
 o

pt
io

ns
 a

re
 a

va
ila

bl
e

to
 p

ro
vi

de
 in

te
rn

al
 d

o
cu

m
en

ta
tio

n:
 t

ex
t

bo
xe

s,
 te

xt
 p

e
r

G
ol

dS
im

 e
le

m
en

t,
h

yp
e

rli
nk

s,
 a

nd
 v

is
ua

l e
le

m
en

ts

(d
ia

gr
am

s/
dr

a
w

in
gs

/p
lo

ts
, c

us
to

m
iz

ed
 ic

on
s)

.
T

he
 a

va
ila

bi
lit

y
of

in

flu
en

ce
 d

ep
en

d
en

ci
es

 (
"a

ffe
ct

s"
 a

nd
 "

fu
nc

tio
n

of
")

 g
re

at
ly

 fa
ci

lit
at

es

un
de

rs
ta

nd
in

g
th

e
co

m
pu

ta
tio

ns
, e

ve
n

if
m

in
im

al
 d

ev
el

op
er

do

cu
m

en
ta

tio
n

w
as

 a
va

ila
bl

e.

 S

tr
en

gt
hs

:
M

ul
tip

le
 o

pt
io

ns
 a

re
 a

va
ila

bl
e

to
 p

ro
vi

de
 in

te
rn

al
 d

o
cu

m
en

ta
tio

n:

H
T

M
L

ge
n

er
at

io
n,

 d
oc

st
rin

gs
, a

nd
 s

ou
rc

e
co

de
 c

om
m

en
ts

.
O

pe
n

so
ur

ce
, t

hi
rd

-p
a

rt
y

pr
o

gr
am

s
an

d
m

od
ul

es
 a

re
 a

va
ila

bl
e

to
 e

nh
an

ce

de
ve

lo
pm

en
t o

f d
oc

um
en

ta
tio

n
ac

ce
ss

ib
ili

ty
 (

e.
g.

, t
he

 E
p

yd
oc

 o
r

S
P

H
IN

X
 p

yt
h

on
 d

oc
um

en
ta

tio
n

g
en

er
at

o
r)

 Li

m
ita

tio
n

:

E
xt

ra
 le

a
rn

in
g

is
 n

ee
de

d
to

 u
se

 d
oc

um
en

ta
tio

n
to

o
ls

.

M
ul

tip
le

 o
pt

io
ns

 a
re

 a
va

ila
bl

e
fo

r
in

te
rn

al
 d

oc
um

en
ta

tio
n.

 In

te
rn

al
 d

oc
um

e
nt

at
io

n
is

 in
 a

 fo
rm

at

th
at

 is
 e

as
y

to
 r

e
ad

 a
nd

 u
nd

e
rs

ta
nd

.

In
te

rn
al

 d
oc

um
e

nt
at

io
n

is
 s

ea
rc

ha
bl

e
an

d
ca

n
be

 q
ue

rie
d.

 M

ai
nt

en
an

ce
 o

f i
nt

er
na

l
do

cu
m

en
ta

tio
n

is
 s

im
pl

e,
 a

nd
 to

ol
s

to

m
ai

nt
ai

n
in

te
rn

al
 d

oc
um

en
ta

tio
n

a
re

si

m
pl

e
to

 le
ar

n.

O
p

er
a

ti
n

g
 S

ys
te

m
 C

o
m

p
a

ti
b

ili
ty

G

ol
dS

im
 is

 c
om

pa
tib

le
 w

ith
 M

ic
ro

so
ft

®
 W

in
do

w
s®

 o
pe

ra
tin

g
sy

st
em

s.

D
iff

er
en

t b
eh

av
io

r
in

 r
eg

a
rd

 to
 r

es
po

ns
e

to
 h

yp
er

lin
ks

 e
m

be
dd

ed
 in

da

sh
bo

ar
d

bu
tto

ns
 w

as
 n

ot
e

d
in

 W
in

do
w

s
X

P
 a

nd
 7

.

xL
P

R
-S

IA
M

 is
 c

o
m

pa
tib

le
 w

ith
 W

in
do

w
s

op
er

at
in

g
sy

st
em

s.

D
iff

ic
ul

tie
s

w
er

e
en

co
un

te
re

d
du

ri
ng

 in
st

al
la

tio
n

fo
r

so
m

e
m

ac
hi

ne
s;

ho

w
ev

er
,

w
e

 w
er

e
un

ab
le

 to
 d

ia
gn

os
e

th
e

ca
us

e.

 T
he

re
 w

as
 p

ar
tia

l s
uc

ce
ss

 in
 in

st
al

lin
g

xL
P

R
-S

IA
M

 in
 L

in
ux

.
It

w
as

no

t p
os

si
bl

e
to

 la
un

ch
 th

e
G

U
I t

o
ex

ec
ut

e
th

e
co

d
e

.
H

o
w

ev
er

, t
h

e
co

de
 w

as
 s

uc
ce

ss
fu

lly
 e

xe
cu

te
d

fr
om

 a
 c

om
m

an
d

lin
e,

 a
ft

er

co
m

pi
la

tio
n

in
 L

in
ux

.
M

ak
in

g
S

IA
M

 fu
lly

 c
om

pa
tib

le
 w

ith
 L

in
ux

 w
ill

re

qu
ire

 d
e

bu
gg

in
g

an
d

de
ve

lo
pm

e
nt

 e
ffo

rt
.

C
om

pa
tib

le
 w

ith
 s

ev
er

al
 o

pe
ra

tin
g

sy
st

e
m

s

P
ro

g
ra

m
m

in
g

 L
an

g
u

ag
e

C
o

m
p

at
ib

ili
ty

In

te
rf

ac
e

to
ol

s
ar

e
av

ai
la

bl
e

to
 in

co
rp

or
at

e
fu

nc
tio

n
s

pr
og

ra
m

m
e

d
in

F

O
R

T
R

A
N

,
C

, a
nd

 C
+

+
.

M
in

or
 e

xt
ra

 in
te

rf
ac

e
co

d
e

is
 n

ee
de

d
fo

r
pr

op
er

 d
ia

lo
g

w
ith

 G
ol

dS
im

.
 G

ol
dS

im
 c

an
 a

ls
o

lin
k

to
 E

xc
el

®
 a

nd

us
e

co
m

pu
ta

tio
ns

 d
riv

en
 b

y
E

xc
el

,
in

cl
ud

in
g

ex
te

n
de

d
V

is
ua

l B
as

ic
®

fu
nc

tio
ns

.

In
te

rf
ac

e
to

ol
s

ar
e

av
ai

la
bl

e
to

 in
co

rp
or

at
e

fu
nc

tio
n

s
pr

og
ra

m
m

e
d

in

F
O

R
T

R
A

N
,

C
, a

nd
 C

+
+

.
M

in
or

 e
xt

ra
 in

te
rf

ac
e

co
d

e
is

 n
ee

de
d

fo
r

pr
op

er
 d

ia
lo

g
w

ith
 P

yt
ho

n.

In
te

rf
ac

e
av

ai
la

bl
e

to
 e

st
ab

lis
h

di
al

og

w
ith

 fu
nc

tio
ns

 a
n

d
su

br
ou

tin
es

pr

og
ra

m
m

ed
 in

 F
O

R
T

R
A

N
, C

,
an

d
C

+
+

. M
in

im
al

 c
od

e
ch

an
ge

s
ar

e
ne

ed
ed

 to
 m

ak
e

a
co

de
 c

om
m

un
ic

at
e

w
ith

 th
e

 fr
am

e.
 C

om
pi

la
tio

n
of

 c
od

e
is

 s
im

pl
e.

3-3

crack or through wall crack), required a clever use of looping containers, elements to trigger
discrete changes, and integrator elements. In a traditional programming language, such as
FORTRAN, dealing with arrays and array updates is more transparent. For example, an array
index can represent a crack and the appropriate array entry can be directly accessed within a
loop block. GoldSim can be adapted to perform different functions and workarounds can be
implemented using existing GoldSim elements. As models grow in complexity, however, these
workarounds tend to compromise model readability and transparency. The final outcome, in
our opinion, is that a complex GoldSim model requires a dedicated custodian with complete
familiarity of the model and understanding of the workarounds to provide maintenance to
the model.

xLPR–SIAM

The xLPR-SIAM is difficult to follow, in general. Some model components (e.g., timeloop
module) are well documented, have a linear sequence, and are easy to understand. For
example, the main sequence of computations within a realization is controlled by a FORTRAN
subroutine referred to as the timeloop module, which is of a straightforward structure. In fact,
some of the programmers used the FORTRAN timeloop as a reference to decipher the
computational sequence in xLPR-GoldSim. For some other components, the information flow
sequence is not as transparent (e.g., Python code for data management and definition of GUIs).
Part of the difficulty in properly reading the source code is that familiarity with Python,
FORTRAN, and Python libraries to develop GUIs is required. An object-oriented structure was
selected to write the Python code, while FORTRAN follows a traditional functional and
subroutine approach. The internal documentation has variable levels of detail. The FORTRAN
timeloop module was found to be internally documented with an appropriate level of detail. The
Python objects, on the other hand, could include additional documentation and examples to
facilitate an independent programmer’s understanding of the intended flow of information.

Using the Python programming language could significantly enhance the internal documentation
of Python functions. The standard language includes a feature for defining documentation
entries for classes, methods, functions, and modules in documentation strings (commonly
referred to as docstrings). Docstrings can incorporate descriptions to explain the purpose and
usage of the code, as well as provide examples. The docstring entries can be accessed by
default from the Python interactive interpreter where formatting of the docstring is automatically
handled by the pydoc module (Python Software Foundation, 2011a). The pydoc module is
provided in the Python standard library and can also be used to generate an HTML version of
the documentation for viewing in a web browser. In addition to pydoc, the doctest module
(also included in the standard library) (Python Software Foundation, 2011b) can utilize properly
formatted code usage examples included in docstrings to perform automated testing of the
source code.

Use of open source, third-party tools like Epydoc (Loper, 2011) or Sphinx (Brandl, 2011) can
greatly enhance information from docstrings and improve documentation accessibility. Both
documentation generation tools can take advantage of markup text to generate enhanced
formatting and hyperlinks, as well as provide convenient documentation search capabilities for
the end user. The Epydoc tool can also be used to auto generate class diagrams that are
embedded in the HTML documentation and contain hyperlinks that permit the user to
navigate documentation by clicking directly on the class diagrams. Figure 3-1 is a screen
capture of documentation generated using Sphinx that can be read using an internet browser.
The screen capture shows highlighted Python code, and a quick search field, which are
automatically generated by the Sphinx functions. Figure 3-2 is a screen capture showing an

3-4

Figure 3-1. An Example of Documentation Generated Using the Sphinx Python Documentation
Generator (Note Text Highlighting for Python Code and Search Feature). Screenshot Captured

From Python Documentation (Python Uses Sphinx) Website (Python Software Foundation, 2011c).

Figure 3-2. An Example of an Embedded and Interactive Class Diagram and Documentation
Generated Using Epydoc (Loper, 2011)

3-5

embedded interactive class diagram. However, enhancing the documentation requires learning
additional tools and text markup syntax and can increase documentation maintenance.

Note that xLPR-SIAM has used the Epydoc tool for generating its code application programming
interface documentation. xLPR-SIAM provides a Help menu item in its GUI interface that
accesses the system web browser to display HTML documentation generated with Epydoc and
included in the xLPR-SIAM distribution. An example of the Help menu item and the HTML
documentation is provided in Figure 3-3. The documentation provided includes a set of framed
windows with hyperlinks for viewing class and module hierarchies, docstring content, and
module source code. However, the docstrings are minimally populated, and therefore, the
information displayed in the Help browser is of limited value. Further, the authors have not
taken advantage of auto generation of class diagrams or use of markup text. xLPR-SIAM does
not make extensive use of the testdoc module.

A comment is made with respect to operating system compatibility of xLPR-SIAM. Python and
the xLPR-SIAM dependencies were installed on a Linux machine, Debian 5 distribution. The
process to install the dependencies required several hours, due to the need for (i) finding and
downloading libraries, (ii) compiling and installing the dependencies, and (iii) compiling
FORTRAN codes to be invoked by Python using the f2py utility.1 Additional dependencies are
needed (e.g., Berkeley database and Python bindings) in the Linux installation. Python needs
to be uninstalled and compiled again after installation of the Berkeley database; otherwise,
Python database handling functions are not enabled. After a process that took several hours,
the SIAM GUI could not be made to work. However, xLPR was launched from a Python
command line, using as input a database file generated in Microsoft® Windows®. The run was
successfully completed; however, it yielded different results than the Windows run. Some data
inputs were not properly read from the input database. For example, the Linux run recorded
fewer stochastic variables than the Windows run. It appears that xLPR-SIAM can be made to
run in Linux, but additional effort and debugging is needed. On the other hand, GoldSim is only
designed to work with Windows operating systems.

Recommendations

For both xLPR codes, the recommendation is to enhance the internal documentation. For
xLPR-GoldSim, it is recommended to enhance documentation by explaining the purpose of key
GoldSim model elements, and to use visual aids and text boxes to explain actions at the
container level (minimal, to the point documentation will be sufficient to facilitate the
learning effort).

For xLPR-SIAM, it is recommended to enhance the documentation by consistently populating
docstrings, provide examples for the use of functions in these docstrings, and more thoroughly
utilize capabilities of available Python documentation tools for Python functions. An interactive
diagram of the class structure would also facilitate the learning effort.

1 f2py is a FORTRAN to Python interface generator that comes with Python. FORTRAN code can be compiled using
f2py so to make FORTRAN code functions or subroutines executable from a Python command line or within Python
code.

3-6

Figure 3-3. Example of Accessing xLPR-SIAM Documentation Generated Using Epydoc

4-1

4 FLEXIBILITY AND ADAPTABILITY FROM A MODEL
DEVELOPER PERSPECTIVE

The objective of this chapter is to evaluate the flexibility of the frames (GoldSim and SIAM) to
allow for code maintenance and code modifications. To explore the model source code and
structure in more detail, “dummy” modules were inserted in both versions of xLPR to perform
the same actions. The following outline defines the approach adopted to implement the
dummy module:

• Develop a FORTRAN procedure

— Compile the procedure into a DLL for use with GoldSim, or compile with the f2py utility1

for use in SIAM

— The procedure takes as input two random factors, r1 and r2, used to modify the crack

depth and crack length

— The depth and length are provided as inputs to the procedure

• Define the parameters r1 and r2 as random

— Input these random parameters in the master spreadsheet in the case of GoldSim or in

one of the GUI input parameter tabs in SIAM

— Allow these random parameters to follow available distributions in xLPR (e.g., normal,

uniform, log distributions)

— Allow r1 and r2 to switch from aleatory uncertainty to epistemic uncertainty, and from one

distribution to another

• Apply the random factors, r1 and r2, after the subroutine to compute crack growth

— Apply the factors to all active cracks

— Ensure that physical bounds (e.g., thickness or diameter) are not exceeded

• Track r1 and r2 in the set of appropriate random input parameters (epistemic or aleatory)

• Make sure these new input parameters are added to appropriate elements in GoldSim,
output files, or databases

Based on the incorporation of the dummy module, programmers were asked to evaluate the
convenience of tools available in the frame for the development of stochastic models. From the
CNWRA experience in development of performance assessment models to deal with
environmental problems and problems in radioactive waste management, it was deemed that a
flexible frame should include defined tools or functions to construct Monte Carlo models. For
example, a frame should include functions to (i) sample input parameters from distributions,

1 f2py is a FORTRAN to Python interface generator that comes with Python. FORTRAN code can be compiled using
f2py so to make FORTRAN code functions or subroutines executable from a Python command line or within Python
code.

4-2

(ii) record sampled values from multiple realizations, (iii) manage outputs from multiple
realizations, and (iv) create graphic display. The testing performed in this section was aimed at
evaluating the effectiveness of the frame functionality for the efficient deployment of stochastic
models. In developing stochastic models, a number of intermediate outputs are commonly
tracked to understand the flow of computations and their influence on the main outputs.
Therefore, an additional task was performed to evaluate (v) the effort needed to expose and
record an additional parameter output.

Programmers engaged in this task were asked to estimate the time needed to study GoldSim,
Python, and Python libraries, and to have enough knowledge to develop stochastic models or
perform model maintenance. The responses to this question varied. A programmer with
previous familiarity in GoldSim recorded that it took him 17 hours to get properly acquainted to
proceed with the dummy module exercise. Other programmers without any previous GoldSim
experience estimated it would take them up to 120 hours of GoldSim study to gain enough
knowledge for model development and model maintenance. For SIAM, a programmer with
previous familiarity with Python recorded that it took him 32 hours of preliminary study to gain
basic knowledge of SIAM before undertaking the dummy module exercise. Other programmers
without previous exposure to Python estimated a range from 80 to 180 hours to become
acquainted with Python and Python libraries to be able to understand SIAM’s source code.
Note that although the other programmers for both cases were not experienced in GoldSim or
Python, they were experienced engineers with programming backgrounds in FORTRAN.

To control the project scope and budget, programmers were given approximately 2 weeks to
work on the dummy module per frame. In general this time was not adequate to gain enough
knowledge on the frame and on the xLPR architecture to the enable programmers to implement
the module. Only the programmer with previous background in GoldSim and Python was able
to successfully implement the dummy modules within those time constraints.

The successful programmer recorded that it took 78 hours total to implement the dummy
module into xLPR-GoldSim. This total time included the effort to study GoldSim and FORTRAN
and become acquainted with the xLPR-GoldSim architecture. The initial review of background
material was spent mostly in learning FORTRAN basics and DLL interfacing. Additional time
was spent learning the flow of information and the computational sequence of the model. The
78 hours were approximately evenly spent reviewing background material, studying the model
to identify changes, and implementing changes.

The programmer recorded a total of 92 hours to implement the dummy module into xLPR-SIAM.
This time includes effort required to review programming languages and module dependencies
(e.g., Python, FORTRAN, PyQT), review the xLPR-SIAM framework source code, and integrate
the dummy module into the framework. The programmer did not have background experience
in PyQT. The programmer spent most of the time studying PyQT, the model Python class
structures, and PyQT GUIs for data input and output. The computational sequence is fully
contained in the FORTRAN timeloop procedure, which is a relatively short code with intuitive
logic. Limited time was spent learning to compile a FORTRAN module into a Python object and
learning the FORTRAN variable encapsulation. When all necessary additions to the source
code were identified, actual implementation of changes in the code was straightforward and
took significantly less time than the time required to study the source code.

Table 4-1 presents the results of the evaluation of the frame elements to support development
of stochastic models.

 4-3

T
ab

le
 4

-1
.

E
va

lu
at

io
n

 o
f

F
ra

m
e

E
le

m
en

ts
 f

o
r

th
e

D
e

ve
lo

p
m

en
t

o
f

S
to

ch
as

ti
c

M
o

d
el

s
xL

P
R

-G
o

ld
S

im

xL
P

R
-S

IA
M

E
xp

ec
ta

ti
o

n
S

am
p

le
 I

n
p

u
t

P
ar

am
et

er
s

 S

tr
en

gt
hs

:
G

ol
dS

im
®
 o

ffe
rs

 r
an

do
m

 a
nd

 L
H

S
 s

am
p

lin
g

st
ra

te
gi

es
.

A

la
rg

e
va

rie
ty

 o
f

di
st

rib
ut

io
n

ty
p

es
 a

re
 a

va
ila

bl
e

w
ith

in
 a

st

oc
ha

st
ic

 e
le

m
en

t.
 Li

m
ita

tio
ns

:
T

he
 x

LP
R

-G
ol

dS
im

 a
rc

h
ite

ct
ur

e
re

q
ui

re
s

d
u

pl
ic

at
es

 o
f

st
oc

ha
st

ic
 p

ar
a

m
et

er
s

to
 a

cc
o

un
t

fo
r

th
e

ep
is

te
m

ic
-a

le
at

or
y

sp
lit

.
T

o
ad

d
a

 n
e

w
 s

to
ch

as
tic

 p
ar

am
et

er
, c

ha
n

ge
s

in

se
ve

ra
l l

oc
at

io
ns

 a
nd

 lo
g

ic
 to

 s
el

ec
t t

he
 a

pp
ro

pr
ia

te
 v

al
u

e
ar

e
ne

ed
ed

.

 S

tr
en

gt
hs

:
A

 v
ar

ia
te

 c
la

ss
 w

a
s

de
ve

lo
pe

d
so

 th
at

 a
 n

um
be

r
of

 ta
sk

s
co

ul
d

be
 d

ire
ct

ly
 a

cc
om

pl
is

he
d

w
ith

 fe
w

 li
ne

s
of

 c
od

e.

O
nc

e
a

va
ria

bl
e

is
 d

e
cl

ar
e

d
as

 a
n

o
bj

ec
t o

f t
he

 v
ar

ia
te

 c
la

ss
,

xL
P

R
-S

IA
M

 c
a

n
au

to
m

at
ic

al
ly

 d
is

pl
a

y
th

e
va

ri
ab

le
 n

am
e

in
 a

ta

b
in

 th
e

G
U

I (
w

ith
 a

ll
of

 th
e

p
ul

ld
o

w
n

m
en

us
 a

va
ila

bl
e)

, t
he

va

ria
te

 v
a

lu
es

 a
re

 tr
ac

ke
d

in
 a

pp
ro

pr
ia

te
 lo

g
 fi

le
s,

 a
nd

 p
lo

ts

fo
r

sa
m

pl
e

d
va

lu
es

 a
re

 a
va

ila
b

le
.

 Li
m

ita
tio

ns
:

P

ar
am

et
er

 n
a

m
es

 a
re

 h
ar

dc
od

e
d.

 T
he

 d
ev

el
o

pe
r

m
us

t
de

te
rm

in
e

su
ita

bl
e

st
or

ag
e

lo
ca

tio
n

fo
r

th
e

p
ar

am
et

er

in
st

an
ce

 in
 th

e
P

ip
eW

e
ld

 c
la

ss
 a

s
w

e
ll

as
 u

n
de

rs
ta

n
d

th
e

co
rr

ec
t s

yn
ta

x
fo

r
de

fin
in

g
th

e
va

ria
te

 o
bj

ec
t.

 V
ar

ia
bl

es
 c

a
n

be
 e

as
ily

 d
ef

in
ed

as

 s
to

ch
as

tic
.

 S
am

pl
ed

 v
al

ue
s

ar
e

ea
si

ly

ac
ce

ss
ib

le
 to

 b
e

us
ed

 w
ith

in
 th

e
se

qu
en

ce
 o

f c
om

pu
ta

tio
ns

.
 S

w
itc

hi
ng

 b
et

w
ee

n
th

e
av

ai
la

b
le

di

st
rib

ut
io

n
fu

nc
tio

ns
 is

 s
im

pl
e.

 T

he
 p

ro
ce

ss
 to

 c
re

at
e

a
sa

m
p

le
d

va
ria

bl
e

ca
n

be
 m

ad
e

sy
st

em
at

ic
.

R
ec

o
rd

 I
n

p
u

t
P

ar
am

et
er

s

 S

tr
en

gt
hs

:
In

pu
t s

pe
ci

fic
at

io
ns

 fo
r

pa
ra

m
et

er
s

ar
e

re
ta

in
ed

 in
 th

e
lin

ke
d

M

ic
ro

so
ft®

 E
xc

el
®
 s

pr
ea

ds
h

ee
t.

 S
av

in
g

of
 s

am
pl

e
d

va
lu

es
 fo

r
in

p
ut

 v
ar

ia
te

s
ca

n
be

 e
as

ily
 to

gg
le

d
“o

n”
 o

r
“o

ff”
 in

 G
ol

dS
im

.
 Li

m
ita

tio
ns

xL

P
R

-G
ol

dS
im

 a
llo

w
s

e
xp

or
tin

g
of

 s
am

pl
ed

 in
pu

t v
al

ue
s

in
to

ex

te
rn

al
 f

ile
s.

H

o
w

ev
er

,
th

e
m

od
e

l a
rc

hi
te

ct
ur

e
re

q
ui

re
s

w
o

rk
ar

o
un

ds
 to

 c
on

so
lid

at
e

sa
m

pl
ed

 v
al

ue
s

in
to

 e
p

is
te

m
ic

an

d
a

le
at

or
y

fil
es

.
S

ep
ar

at
io

n
 o

f t
he

 in
pu

t p
a

ra
m

et
er

s
in

to

ep
is

te
m

ic
 a

nd
 a

le
at

or
y

is
 n

e
e

de
d

to
 p

ro
pe

rl
y

co
m

pu
te

co

rr
el

at
io

n
st

at
is

tic
s

an
d

us
e

o
th

er
 s

en
si

tiv
ity

 a
na

ly
si

s
te

ch
ni

qu
es

.

 S

tr
en

gt
hs

:
In

pu
t v

al
u

es
 a

re
 a

ut
om

at
ic

al
ly

 r
ec

or
de

d
to

 a
 p

ro
je

ct
 d

at
ab

a
se

fil

e
as

 p
ar

t o
f c

la
ss

 o
bj

ec
ts

.
In

pu
t c

on
st

a
nt

s
an

d
sa

m
p

le
d

pa
ra

m
et

er
s

ar
e

 r
ec

or
de

d
in

 e
xt

er
na

l t
e

xt
 fi

le
s.

 T
he

 fo
rm

at
 o

f
th

e
ou

tp
ut

 fi
le

s
tr

ac
ki

ng
 th

e
e

pi
st

em
ic

 a
nd

 a
le

at
or

y
pa

ra
m

et
er

s
is

 a
 s

im
pl

e
m

at
ri

x
fo

rm
at

 (
co

lu
m

ns
 a

ss
oc

ia
te

d
w

ith
 d

iff
er

e
nt

 p
ar

am
et

er
s,

 r
o

w
s

as
so

ci
at

e
d

w
ith

 d
iff

er
en

t
re

al
iz

at
io

ns
)

w
ith

 c
le

ar
 la

be
ls

.

E
le

m
e

nt
s

an
d

fr
am

e
fu

nc
tio

ns

ar
e

av
a

ila
bl

e
to

 k
ee

p
tr

ac
k

of

sa
m

pl
ed

 v
al

ue
s

fo
r

a
pa

rt
ic

ul
ar

re

al
iz

at
io

n.

 A
 fe

w
 li

ne
s

of
 c

od
e

or
 m

in
im

a
l

ef
fo

rt
 is

 s
uf

fic
ie

nt
 to

 k
ee

p
tr

ac
k

of

sa
m

pl
ed

 v
al

ue
s.

 S

am
pl

ed
 v

al
ue

s
ca

n
be

co

nv
e

ni
e

nt
ly

 r
e

tr
ie

ve
d

fo
r

se
ns

iti
vi

ty
 a

na
ly

se
s.

 T

he
 p

ro
ce

ss
 to

 k
ee

p
tr

ac
k

of

sa
m

pl
ed

 v
al

ue
s

ca
n

be
 m

ad
e

sy

st
em

at
ic

 a
nd

 s
ta

nd
ar

d.

 4-4

T
ab

le
 4

-1
.

 E
va

lu
at

io
n

 o
f

F
ra

m
e

E
le

m
en

ts
 f

o
r

th
e

D
ev

el
o

p
m

en
t

o
f

S
to

ch
as

ti
c

M
o

d
el

s
(C

o
n

ti
n

u
ed

)
xL

P
R

-G
o

ld
S

im

xL
P

R
-S

IA
M

E
xp

ec
ta

ti
o

n
M

an
ag

e
O

u
tp

u
t

fr
o

m
 M

u
lt

ip
le

 R
ea

liz
at

io
n

s

 S

tr
en

gt
hs

:
G

ol
dS

im
 a

ut
o

m
at

ic
al

ly
 p

er
fo

rm
s

da
ta

 m
an

a
ge

m
e

nt
.

F
e

w

st
ep

s
ar

e
re

q
ui

re
d

to
 k

ee
p

tr
a

ck
 o

f m
ul

tip
le

-r
ea

liz
at

io
n

ou
tp

ut
.

 Li

m
ita

tio
ns

:
T

im
es

te
ps

 a
re

 h
ar

d
co

de
d.

 T
he

 o
ut

p
ut

 fr
om

 m
ul

tip
le

re

al
iz

at
io

ns
 is

 n
ot

 m
an

a
ge

d
in

te
rn

a
lly

 in
 th

e
co

de
.

T
o

ke
ep

tr

ac
k

of
 o

ut
pu

t t
im

e
se

rie
s,

 it
 is

 n
ec

es
sa

ry
 to

 c
re

at
e

in
d

ep
e

nd
en

t t
e

xt
 fi

le
s.

C

re
at

io
n

of
 te

xt
 fi

le
s

to
 c

ap
tu

re

ad
d

iti
on

al
 in

te
rm

ed
ia

te
 o

ut
p

ut
s

(t
im

e
se

rie
s

o
r

si
ng

le
-v

al
ue

ou

tp
ut

s)
 p

er
 r

e
al

iz
at

io
n

re
qu

ire
s

m
ul

tip
le

 s
te

ps

(e
.g

.,
de

cl
ar

in
g

ar
ra

ys
,

re
co

m
pi

lin
g

th
e

F
O

R
T

R
A

N
 ti

m
e

lo
o

p,
 d

ec
la

rin
g

th
e

ne
w

ly
 a

d
de

d
te

xt
 fi

le
 a

s
in

pu
t f

or
 th

e
po

st
-p

ro
ce

ss
or

s
T

R
A

N
S

F
O

R
M

E
R

S
 a

nd
 E

X
P

E
C

T
A

T
IO

N
).

S

om
e

st
ep

s
n

e
ed

 c
us

to
m

iz
ed

 P
yt

h
on

 c
od

e
a

nd
 c

us
to

m
iz

ed

ch
an

ge
s

to
 th

e
 F

O
R

T
R

A
N

 ti
m

el
o

op
.

D
ep

en
d

in
g

o
n

w
hi

ch

ou
tp

ut
 is

 e
xp

os
ed

, d
is

tin
ct

 c
h

an
ge

s
ar

e
ne

ed
ed

 in
 th

e
so

ur
ce

co

de
 to

 e
xp

or
t t

he
 d

at
a.

A

pp
e

nd
ix

 C
 d

et
ai

ls
 c

ha
n

ge
s

n
ee

d
e

d
us

in
g

th
e

du
m

m
y

m
od

ul
e

e
xa

m
pl

e.

T
he

 fr
am

e
in

cl
ud

es
 to

o
ls

 o
r

fu
nc

tio
ns

 to
 k

e
ep

 tr
ac

k
of

(i)

 s
in

gl
e-

va
lu

e
ou

tp
ut

s
(e

.g
.,

tim
e

of
 fa

ilu
re

)
p

er
 r

ea
liz

at
io

n,

(ii
)

d
yn

am
ic

 o
ut

pu
ts

 p
er

re

al
iz

at
io

n
(e

.g
.,

cr
ac

k
op

en
in

g
di

sp
la

ce
m

en
t a

s
a

fu
nc

tio
n

of

tim
e)

, a
nd

 (
iii

)
m

at
rix

 o
ut

pu
ts

 p
er

re

al
iz

at
io

n,
 e

ith
er

 s
ta

tic
 o

r
dy

na
m

ic
 (

i.e
.,

m
at

rix
 o

ut
pu

t
as

 a

fu
nc

tio
n

of
 ti

m
e

).

 R
ec

or
di

n
g

an
 in

te
rm

ed
ia

te
 o

u
tp

ut

is
 s

tr
ai

gh
tfo

rw
a

rd
.

 F
ew

 li
ne

s
of

co

de
 o

r
m

in
im

al
 c

ha
ng

es
 a

re

su
ffi

ci
en

t t
o

re
co

rd
 d

at
a,

 a
nd

 th
e

ap
pr

oa
ch

 c
an

 b
e

m
ad

e
sy

st
em

at
ic

.
 N

o
cu

st
om

iz
ed

 c
od

e
or

 m
in

im
al

cu

st
om

iz
e

d
co

de
 is

 n
e

ed
ed

 to

re
co

rd
 d

at
a.

E

ff
o

rt
 f

o
r

G
ra

p
h

ic
al

 D
is

p
la

y
o

f
M

o
n

te
 C

ar
lo

 O
u

tp
u

ts

 S

tr
en

gt
hs

:
F

un
ct

io
ns

 fo
r

g
ra

ph
ic

 d
is

p
la

y
ar

e
na

tiv
el

y
av

ai
la

bl
e

in

G
ol

dS
im

 a
nd

 c
an

 b
e

a
dd

ed
 w

ith
 fe

w
 s

te
ps

.

 S

tr
en

gt
hs

:
F

or
 th

e
tim

e
se

rie
s,

 th
e

pl
ot

tin
g

fu
nc

tio
n

al
ity

 is
 a

ut
om

at
ic

a
lly

en

a
bl

e
d

fo
r

th
e

 r
ec

or
de

d
ou

tp
ut

s,
 o

nc
e

th
e

st
ep

s
fo

r
re

co
rd

in
g

m
ul

tip
le

-r
e

al
iz

at
io

n
ou

tp
ut

 a
re

 im
pl

em
en

te
d

(s
ee

th

e
pr

ev
io

us
 e

nt
ry

 fo
r

a
br

ie
f d

is
cu

ss
io

n
of

 th
es

e
st

ep
s)

.

M
ak

in
g

da
ta

 a
va

ila
bl

e
fo

r
pl

ot
tin

g
is

 s
tr

ai
gh

tfo
rw

a
rd

.
 F

ew
 li

ne
s

of

co
de

 a
re

 s
uf

fic
ie

nt
 to

 m
ak

e
da

ta

av
ai

la
b

le
 fo

r
gr

ap
h

ic
 d

is
p

la
y,

 a
nd

th

e
ap

pr
oa

ch
 to

 e
na

bl
e

da
ta

 fo
r

gr
ap

hi
c

di
sp

la
y

ca
n

be
 m

ad
e

sy
st

em
at

ic
.

 F
un

ct
io

ns
 a

re
 r

ea
d

ily
 a

va
ila

bl
e

fo
r

th
e

gr
ap

hi
c

di
sp

la
y

of
 d

at
a.

T

he
 p

ro
ce

ss
 to

 c
al

l g
ra

ph
ic

fu

nc
tio

ns
 c

a
n

b
e

m
ad

e
sy

st
em

at
ic

.

 4-5

T
ab

le
 4

-1
.

 E
va

lu
at

io
n

 o
f

F
ra

m
e

E
le

m
en

ts
 f

o
r

th
e

D
ev

el
o

p
m

en
t

o
f

S
to

ch
as

ti
c

M
o

d
el

s
(C

o
n

ti
n

u
ed

)
xL

P
R

-G
o

ld
S

im

xL
P

R
-S

IA
M

E
xp

ec
ta

ti
o

n

E
ff

o
rt

 T
o

 E
xp

o
se

/R
ec

o
rd

 A
d

d
it

io
n

al
 O

u
tp

u
ts

 S

tr
en

gt
hs

:
M

in
im

a
l s

te
ps

 a
re

 r
eq

ui
re

d
to

 k
ee

p
tr

ac
k

of
 e

xi
st

in
g

in
te

rm
e

di
at

e
o

ut
pu

ts
 (

e.
g.

, a
d

di
n

g
a

gr
a

ph
ic

al
 e

le
m

en
t i

nt
o

th
e

m
od

e
l,

an
d

 a
 d

as
hb

oa
rd

 s
ho

rt
cu

t)
.

If
th

e
in

te
rm

e
di

at
e

ou
tp

ut
 o

f i
nt

er
e

st
 is

 tr
ac

ke
d

w
ith

in
 a

 G
ol

dS
im

 s
ub

m
od

el
, a

fe

w
 e

xt
ra

 s
te

ps
 a

re
 n

ee
de

d
to

 p
as

s
th

e
in

te
rm

ed
ia

te
 o

ut
p

ut
 to

th

e
ro

ot
 m

od
el

.
 T

he
 r

ev
er

se
 p

ro
ce

ss
 to

 h
id

e/
re

m
ov

e
in

te
rm

e
di

at
e

o
ut

pu
ts

 is

st
ra

ig
ht

fo
rw

a
rd

.
 In

 g
en

er
al

, r
e

m
ov

in
g

el
em

en
ts

 is
 e

as
ie

r
th

a
n

ad
d

in
g

el
em

en
ts

.
G

ol
dS

im
 m

od
e

ls
 a

llo
w

 fo
r

fu
ll

re
m

ov
al

 o
f

co
nt

ai
ne

rs
 a

nd
 e

nc
lo

se
d

e
le

m
en

ts
.

B
ef

or
e

ru
nn

in
g,

 G
ol

dS
im

ch

ec
ks

 th
e

m
od

el
 a

nd
 w

ar
ns

 th
e

us
er

 o
f m

is
si

ng

de
p

en
de

nc
ie

s
an

d
th

e
ir

lo
ca

tio
ns

, f
ac

ili
ta

tin
g

 th
e

re
m

ov
al

of

 e
xt

ra
 e

le
m

e
nt

s.

 Li
m

ita
tio

ns
:

F
or

 m
ul

tid
im

e
n

si
on

al
 (

ve
ct

or
)

da
ta

, e
xp

os
in

g
th

e
da

ta
 fo

r
su

bs
e

qu
en

t e
xp

or
t/d

is
p

la
y

m
a

y
re

q
ui

re
 th

e
a

dd
iti

on
 o

f a
 la

rg
e

nu
m

b
er

 o
f e

le
m

en
ts

.
A

lth
ou

gh
 g

ro
up

s
of

 e
le

m
en

ts
 c

an
 b

e

co
pi

ed
 a

nd
 r

en
am

ed
 to

 r
ed

uc
e

th
e

w
or

kl
oa

d,
 s

om
e

se
tti

ng
s

m
us

t b
e

m
an

u
al

ly
 a

dj
us

te
d

fo
r

ea
ch

 G
ol

dS
im

 e
le

m
e

nt
.

In
 a

tr

ad
iti

o
na

l p
ro

g
ra

m
m

in
g

la
n

gu
ag

e,
 r

ep
et

iti
ve

 t
as

ks
 c

an
 b

e
co

nc
is

el
y

pr
o

gr
am

m
ed

 u
si

ng
 in

de
xi

ng
 a

nd
 lo

op
s.

In

G

ol
dS

im
, m

uc
h

of
 th

e
de

ve
lo

pm
en

t i
s

sp
e

nt
 m

an
ip

ul
at

in
g

la
rg

e
nu

m
b

er
s

of
 G

ol
dS

im
 e

le
m

en
ts

,
w

ith
 li

m
ite

d
po

ss
ib

ili
ty

 t
o

ta
ke

 a
dv

a
nt

ag
e

of
 p

ro
gr

am
m

in
g

sh
or

tc
ut

s.

G
ol

dS
im

 r
e

qu
ir

es

sk
ill

 a
n

d
pa

tie
n

ce
 (

gi
ve

n
th

e
la

rg
e

nu
m

be
r

of
 e

le
m

en
ts

 th
at

m

a
y

re
qu

ire
 o

n
e-

b
y-

o
ne

 m
od

ifi
ca

tio
n)

 to
 im

pl
em

en
t c

ha
ng

e
s.

A

pp
e

nd
ix

 C
 p

ro
vi

d
es

 d
et

a
ils

 o
n

ch
a

ng
es

 n
e

ed
e

d
to

 th
e

xL
P

R

co
de

 to
 e

xp
os

e
 a

dd
iti

on
al

 o
ut

p
ut

 o
n

th
e

ba
si

s
of

 th
e

du
m

m
y

m
od

u
le

 e
xa

m
pl

e.

 Li

m
ita

tio
ns

:
D

ep
en

d
in

g
on

 th
e

ou
tp

ut
, d

iff
er

en
t s

te
ps

 a
re

 r
eq

u
ire

d
to

ex

po
se

 in
te

rm
ed

ia
te

 o
ut

p
ut

s.

E
xp

os
in

g
p

ar
am

et
er

 o
ut

p
ut

 fo
r

po
st

-p
ro

ce
ss

in
g

(a
nd

 p
lo

tti
n

g)
 r

eq
ui

re
s

ad
di

tio
ns

 in
 m

u
lti

pl
e

so
ur

ce
 c

o
de

 fi
le

s
in

cl
ud

in
g

d
e

fin
in

g
e

xp
or

t f
ile

na

m
es

/in
te

rf
ac

es
, d

ec
la

ri
ng

 a
rr

a
ys

 in
 th

e
F

O
R

T
R

A
N

tim

el
o

op
, a

n
d

re
co

m
p

ili
ng

 o
f t

he
 F

O
R

T
R

A
N

 ti
m

e
lo

op
 fi

le
 to

be

 a
cc

es
si

bl
e

to
 P

yt
h

on
 (

se
e

A
pp

e
nd

ix
 C

).

T
he

 m
aj

or
ity

 o
f

th
e

ef
fo

rt
, u

si
ng

 th
e

du
m

m
y

m
od

u
le

 a
s

a
n

ex
am

p
le

,
w

as

sp
en

t i
d

en
tif

yi
n

g
lo

ca
tio

ns
 fo

r
ad

d
iti

on
s

an
d

m
od

ifi
ca

tio
ns

 t
o

th
e

so
ur

ce
 c

o
d

e.

It
is

 n
ot

ed
 th

at
 th

e
ne

ed
e

d
 m

od
ifi

ca
tio

ns
 to

th

e
xL

P
R

 s
ou

rc
e

co
de

 w
e

re
 s

tr
ai

gh
tfo

rw
a

rd
 a

nd
 d

id
 n

ot

re
qu

ire
 s

ig
ni

fic
an

t t
im

e
to

 im
pl

em
en

t.

 T
he

 r
ev

er
se

 p
ro

ce
ss

 to
 h

id
e/

re
m

ov
e

tr
ac

ki
ng

 o
f i

nt
er

m
ed

ia
te

ou

tp
ut

s
re

q
ui

re
s

th
e

sa
m

e
nu

m
be

r
of

 s
te

ps
.

S
ho

rt
cu

ts
 c

an

be
 a

d
op

te
d

(e
.g

.,
av

oi
d

cr
ea

tin
g

th
e

o
ut

pu
t f

ile
 a

s
la

st
 s

te
p)

;
ho

w
e

ve
r,

 s
ho

rt
cu

ts
 d

o
no

t f
ul

ly
 c

le
an

 th
e

so
u

rc
e

co
de

 a
nd

m

a
y

st
ill

 tr
ac

k
un

n
ec

es
sa

ry
 d

at
a

in
 m

em
or

y.

A
 fe

w
 s

te
ps

 a
re

 s
uf

fic
ie

nt
 to

en

a
bl

e
tr

ac
ki

ng
 o

f e
xi

st
in

g
ou

tp
ut

.
A

 fe
w

 li
ne

s
of

 c
od

e
ar

e
su

ffi
ci

en
t t

o
tr

ac
k/

ex
po

se
d

ou
tp

ut
s.

 T
he

 a
pp

ro
ac

h
to

 tr
ac

k/
ex

po
se

ou

tp
ut

 c
a

n
be

 m
ad

e
sy

st
em

at
ic

.
 T

ra
ck

ed
/e

xp
os

ed
 o

ut
p

ut
 is

av

ai
la

b
le

 to
 b

e
ex

tr
ac

te
d

fo
r

p
os

t-
pr

oc
es

si
ng

 a
nd

 g
ra

ph
ic

 d
is

p
la

y.

 T
he

 c
od

in
g

tim
e

ne
e

de
d

to

tr
ac

k/
ex

po
se

 o
ut

pu
t i

s
sh

or
t.

 T
he

 p
ro

ce
ss

 to
 tr

ac
k

in
te

rm
e

di
at

e
o

ut
pu

ts
 c

an
 b

e
ea

si
ly

 r
ev

er
te

d
to

 h
id

e/
re

m
ov

e

tr
ac

ke
d

ou
tp

ut
s.

4-6

Discussion and Recommendations

xLPR-GoldSim offers advantages to incorporate code updates and perform code maintenance.
The time needed to become familiar with GoldSim is shorter, modifications can be focused, and
modifications can be developed and tested independently from the main model. The
unit-sensitive approach and active error checking (syntax and variable names) available in
GoldSim minimize errors while programming. On the other hand, GoldSim requires skill and
patience. As the number of elements in a model grows and interconnections develop,
modifications need to be implemented element by element and the process can become
cumbersome. This was experienced in xLPR-GoldSim while adding a new stochastic
parameter as part of the dummy module insertion experiment. xLPR-SIAM requires familiarity
with object-oriented programming to understand the code logic, as well as with Python,
FORTRAN, and Python libraries. Systematic approaches were sought in SIAM (i.e.,
approaches that could be repeated to implement common actions during model development or
maintenance, and to avoid the need of customized coding), and systematic approaches were
found to define stochastic input parameters, data management of input parameters, and graphic
display of input parameters. On the other hand, general systematic approaches for
management of data output from multiple realizations appear difficult to define. The approach
to capture/manage multiple-realization output data from a dummy module required changes to
Python and FORTRAN codes. The changes needed would be different depending on which
data and data structure (e.g., single valued, timestep series, static or timestep-dependent
arrays) are to be captured. Given the need of customized coding, a higher level of expertise is
needed to provide support to the xLPR-SIAM. One of the benefits of the xLPR-SIAM code is
that once the required change was identified in the example of the insertion of a dummy
module, a few lines of code spread among several modules sufficed to perform a broad set of
functions (e.g., create output text files, enable text files for TRANSFORMERS and
EXPECTATION, and enable the results from post-processing for graphic display, with all the
graphic display options available). In contrast, in xLPR-GoldSim, every action needs to be
manually implemented.

Recommendations

xLRP-GoldSim

The shortcomings noted in Table 4-1 for xLPR-GoldSim are mostly shortcomings of the
GoldSim software. Those shortcomings can only be addressed by the GoldSim developers. No
further recommendations are provided, other than enhancing the internal documentation, as
explained in Chapter 3.

xLPR-SIAM

• Develop generic functions or approaches (i.e., systematic steps) to perform data

management from multiple-realization outputs. Define standard data structures and data
text formats for different kinds of outputs: singe value outputs per realization, time series
per realization, data arrays, and data arrays that are functions of time per realization. The
purpose of the standard functions and data formats would be to minimize the need for a
customized code to perform routine actions, such as exporting output data in text files or
tracking intermediate output data in databases.

• Write tutorials for programmers. NRC expressed interest in actively contributing to the

code development effort; tutorials would facilitate this effort. These tutorials should cover

4-7

procedures to (i) insert a new random variable, (ii) pass sampled values as input to a
computational module, (iii) capture outputs in text files from multiple realizations, and
(iv) define standard output file formats for various types of multiple-realization outputs
(single value outputs per realization, time series per realization, data arrays, and data
arrays that are functions of time per realization). Appendix C describes steps taken to
implement the dummy module, which could be used as an example for developing a
tutorial. Tutorials could help reduce time requirements for learning Python and other
libraries used in the framework.

• Develop a list of optional intermediate outputs to be exported in text files. Use flags in the

GUI to enable export of these intermediate outputs.

• At some point during the development of xLPR-SIAM, outputs were tracked in a database

that could be queried using Python. It appears that such an approach was abandoned in
favor of external text output files. It is recommended to reconsider maintaining a
database, possibly tracking more intermediate outputs than in the text files. In this
manner, the database could be queried within Python to access more data for further
analysis or post-processing. A GUI could be developed with flags to enable/disable
tracking of intermediate outputs in the database. If additional data are needed, Python
functions could be developed to get data from the database and make text files.
Alternatively, those data could be analyzed and plotted using Python, without the need for
intermediate text files. It is envisioned that Python scripts could be developed by users
and shared among users to perform particular analyses or get particular graphic displays
or data post-processing. For example, Python post-processing scripts can be developed
to perform the same functions as the TRANSFORMERS and EXPECTATION programs,
or to parse, filter, and plot particular data.

• Design a strategy to allow for user-defined default input values for the deterministic cases.

• Consider developing a statistical toolbox to compute correlations between single-value

inputs and single-value outputs per realization, accounting for the aleatory-epistemic
realization split. Allow sorting of the correlation coefficients by magnitude to identify the
parameters with strongest correlation. Consider correlations among “raw” data and
rank-transformed data.

5-1

5 FUTURE DEVELOPMENT POTENTIAL

The objective of this section is to comment on the potential of the frames and the availability
of special functions for future development. The following aspects were considered:
(i) preprocessing (e.g., specialized sampling, importance sampling), (ii) post-processing
(e.g., statistics, sensitivity analyses, computations to account for leak detection and mitigation),
(iii) optimization and parameter estimation, (iv) parallel and distributed processing, (v) multiparty
code development, and (vi) availability of third-party modules. The last two points were
considered because NRC staff expressed interest in actively contributing to code development,
as well as opening code development to people in the industry. Similarly to previous sections,
the findings are presented in the form of a table, Table 5-1, but no star rating grade was used.

Table 5-1. Comparison of Frame Features To Support Future Development
xLPR-GoldSim xLPR-SIAM

Preprocessing (e.g., Specialized Sampling, Importance Sampling)
Pre-processing can be accomplished. The
xLPR-GoldSim developers demonstrated this concept
by incorporating the Discrete Probability Distributions
(DPD) module for stochastic parameter sampling via
DLL elements.

Pre-processing modules can be developed in Python or
with an interface in C/C++ or FORTRAN and linked to the
code. Pre-processing modules can be incorporated in a
seamless manner with the option for interaction with a
GUI.

Postprocessing (e.g., Statistics, Sensitivity Analyses, Computations To Account for Leak Detection
and Mitigation)
Once GoldSim® completes a run, there is no access to
the internally stored data for further computations,
except by specialized functions offered by GoldSim
(e.g., computation of statistics of multirealization data,
computation of correlations matrices of inputs and
outputs). To address this limitation, external programs
(TRANSFORMERS and EXPECTATION) were
developed in the xLPR project to post-process data.
Post-processed data cannot be brought back into the
same GoldSim model to take advantage of
plotting capabilities.

Post-processing modules can be developed in Python or
with an interface in C/C++ or FORTRAN and linked to the
code in a seamless manner, as was done for
TRANSFORMERS and EXPECTATION. Inputs for post-
processing input can be specified from a custom GUI
interface. Results from post-processing can be
graphically displayed within the frame.

Optimization and Parameter Estimation
GoldSim has an internal tool for optimization. In the
optimization tool, stochastic input parameters are
adjusted to optimize an objective function. This
optimization tool can be used for parameter estimation.
GoldSim also includes a tool for sensitivity analysis to
sweep the value of an input parameter across a range,
while keeping others constant.

Of interest to the project is adopting adaptive sampling
strategies to sample infrequent failure modes and
automatically adjusting weight factors to expedite
convergence of statistics. It is envisioned that
approaches where the output of the previous
realizations is used as input to define the input
parameters for the next realization following an
optimization algorithm can be implemented with the use
of DLLs. The only envisioned limitation is that
execution of external optimization algorithms may be
limited to the nonparallel run mode.

Adoption of sampling strategies where the output of
previous realizations is used to define the inputs for the
next realization (e.g., optimization for parameter
estimation, adaptive sampling) could require changes to
framework architecture, which would potentially require
significant development effort.

External software is readily available for optimization and
parameter estimation (e.g., Parameter Estimation, Inc.,
2011). Significant changes would be needed to allow for
xLPR computations to interface with such
external software.

5-2

Table 5-1. Comparison of Frame Features to Support Future Development (Continued)
xLPR-GoldSim xLPR-SIAM

Parallel and Distributed Processing
GoldSim already has embedded capabilities for parallel
processing. Minimal changes are required to take
advantage of parallel processing, except when DLLs
with special requirements are used. The code
reviewers ran multiple realizations of xLPR-GoldSim in
parallel mode using four processors in a computer (see
Chapter 2).

Parallel runs cannot be made using the GoldSim
Player. GoldSim Pro allows spanning realizations in up
to four computer processors. The GoldSim Distributed
Processing Module Plus allows for use of an unlimited
number of computer processors. The license to
operate the Plus module must be purchased separately.

There is flexibility for implementation of various parallel
processing methodologies and technologies [e.g.,
Message Passing Interface (2011), Bulk Synchronous
Parallel (Hill, et al., 1998), cloud computing]. There are
several third party modules available that support object
sharing and parallelization of Python-based code [e.g.,
Parallel Python (Vanovschi, 2011), Pyros
(de Jone, 2011)].

Making SIAM parallel will likely require significant
development effort. It is recommended to implement
changes to SIAM to enable parallel processing while
development of xLPR is still in early stages.

Multiparty Code Development
Limited capability is available in GoldSim for tracking
changes to a model. The GoldSim version tracking
function is limited to listing, in a text file, model
elements affected by changes, without further details on
those changes. There is no capability to revert
individual changes.

Because the model file is a proprietary format, external
version tracking systems are not available. However,
alternative effective approaches and protocols can be
implemented. For example, file servers including
intermediate model files can keep copies of most recent
model files for download and upload after model
changes. A custodian is needed for this approach to be
effective. No major limitation is envisioned for
multiparty code development.

There are established methods for tracking changes to
Python source code, and there are several robust,
open-source packages available for use [e.g., Mercurial
(Mackall, 2011), SubVersion (Apache Software
Foundation, 2011), CVS (Free Software Foundation, Inc.,
2011), git (git, 2011), Bazaar (Canonical Ltd, 2011)].

Changes to source code can be tracked by each
individual change, and developers can revert to past
states using code versioning tracking software. No major
limitation is envisioned for multiparty development.

Availability of Third-Party Modules
Third-party modules could potentially be incorporated
through the use of external DLL elements. Third-party
modules that cannot be translated into a DLL cannot be
used directly in GoldSim.

There are many third-party modules available for a wide
variety of applications (e.g., sampling, parallel processing,
plotting, generation of documentation) developed for use
with Python. Python libraries and modules are, in
general, open source.

No limitations are envisioned with respect to the use of
third party modules designed for use with Python.

Apache Software Foundation. “ApacheTM Subversion®.” <http://subversion.apache.org/> Forest Hill, Maryland: The
Apache Software Foundation. 2011.
Canonical Ltd. “Bazaar.” <http://bazaar.canonical.com/en/> London, United Kingdom: Canonical Ltd. 2011.
Free Software Foundation, Inc. “CVS—Concurrent Versions System.” <http://www.nongnu.org/cvs/#development>
Boston, Massachusetts: Free Software Foundation, Inc. 2011.
git. “The Fast Version Control System.” <http://git-scm.com/> 2011.
Hill, J., B. McColl, D. Stefanescu, M. Goudreau, K. Lang, S. Rao, T. Suel, T. Tsantilas, and R. Bisseling. “Parallel
Computing.” BSPlib: The BSP Programming Library. Vol. 24. pp. 1,947–1,980. 1998.
de Jone, I. “Pyro—Python Remote Objects.” <http://www.xs4all.nl/~irmen/pyro3/> 2011.
Mackall, M. “Mercurial.” <http://mercurial.selenic.com/> 2011.
Message Passing Interface. “MPI Documents.” <http://www.mpi-forum.org/docs/docs.html> 2011.
Parameter Estimation, Inc. “PEST—Parameter Estimation for Any Model.” <http://www.parameter-
estimation.com/html/pest.html> Sandy, Utah: Parameter Estimation, Inc., a Division of Scientific Software
Group. 2011.
Vanovschi, V. “Parallel Python.” <http://www.parallelpython.com/> 2011.

5-3

Recommendations

For xLPR-GoldSim, the main perceived limitation for future development is the lack of access to
data stored in a GoldSim model file after run completion to allow for further analysis of the data
without leaving the GoldSim frame. To overcome this limitation, GoldSim developers would
have to enable additional functionality to open a window to manipulate archived data in the
model files. It is unclear how difficult and expensive it would be for GoldSim developers to
enable this functionality.

For xLPR-SIAM, it is recommended to implement changes to SIAM to take advantage of
existing Python parallel processing capabilities. Such changes should take place early in
the development of xLPR. Consideration should be given to changing the code architecture to
allow for the use of external optimization software to drive the xLPR computations.

6-1

6 CONCLUSIONS

In general, xLPR-GoldSim and xLPR-SIAM have different limitations and strengths in regard to
future development potential. xLPR-GoldSim is built upon GoldSim, which offers major
strengths with respect to prompt model deployment, polished interfaces, graphic display,
management of Monte Carlo data, the limited background needed to read GoldSim model files,
and the quick learning time for model developers. GoldSim is a frame with numerous
predefined functions that can be used in a “plug-play” approach. When specialized functions or
approaches are needed, workarounds are possible to adapt existing GoldSim functions to
perform different tasks. However, these workarounds, in general, compromise model clarity by
the use of complex logic. Also, as GoldSim models grow in complexity, modifications can
become cumbersome because adjustments need to be manually implemented in the fields of
the GoldSim elements, element by element. In the comparison tables for Chapters 2 to 5, a
number of limitations of xLPR-GoldSim were noted. However, the majority of those limitations
are intrinsic to the GoldSim software. In other words, these limitations cannot be addressed by
changing the xLPR-GoldSim model, but by changes in the GoldSim software. A major limitation
of the GoldSim software, noted in Chapter 5, is that once GoldSim completes a run, only limited
tools are available to perform computations on data stored in a model file. This limitation was
overcome in the xLPR project by manual exporting of data stored in GoldSim model files. This
process was inefficient; as indicated in Table 2.2, the export process can take a few hours. An
alternative data export process could be explored by using DLLs to capture data and write
realization data in external files after each realization is completed. To analyze the exported
data, analytical and plotting software other than GoldSim is needed. These are likely limitations
that the xLPR project will encounter when additional models for failure of other components of
the piping cooling system are developed using GoldSim. Chances are high that separate
models would have to be programmed, each generating “raw data,” and external tools or
software would have to be used to analyze the GoldSim raw data to define a total system metric
of risk. The process for a total system analysis is envisioned to be complex, and possibly only
experts would be able to perform such total system analyses. Summarizing, models developed
in GoldSim can be quickly deployed, are readable, and require moderate effort to initiate model
maintenance. On the limiting side, developers must deal with GoldSim software constraints with
workarounds as the model grows in size and complexity, the requirement for external tools to
analyze the data seems unavoidable, and data exporting can be a potential bottleneck.

xLPR-SIAM is built upon SIAM-PFM. The SIAM platform is intended to include tools for
probabilistic risk assessment and to be extensible to address different problems. Accordingly,
the reviewers evaluated SIAM for functionality that they considered should be included in a
frame used for the development of stochastic models. Functionality was sought for (i) sampling
input parameters from distribution functions, (ii) managing input data from multiple realizations,
(iii) managing output data (e.g., single value per realization, time series per realization,
multivalue per realization, or multivalue per timestep), and (iv) plotting capabilities for inputs and
outputs. To offer the intended frame adaptability, such functionality should be available in a
systematic manner, so that by adapting blocks of code with minor changes (thus minimizing the
need to write new, customized, code), the functionality could be applied to different inputs and
outputs, and, of course, be available for the development of varied models. In Chapter 4,
xLPR-SIAM scored high in areas (i) and (ii). It was found that systematic code, applied in the
same or similar manner, can be used to perform the functions (i) and (ii). Using the dummy
module described in Chapter 4, it was found that few lines of code sufficed to (1) create a new
parameter in an input tab in the xLPR-SIAM GUI with all of the pulldown choices, (2) create text
log files, and (3) enable graphic displays of probability density or cumulative probability plots. It
is remarkable the number of actions that can be accomplished with a few lines of code, thanks

6-2

to the xLPR-SIAM design. However, xLPR-SIAM did not score high in task (iii). Using the
dummy module from Chapter 4, it was found that changes were needed in several Python files
and a FORTRAN code and in compilation of the FORTRAN code to capture a time series from
multiple realizations in a text file. Based on the Chapter 4 evaluation, it is extrapolated that
different code changes are needed to export data, depending on which data are to be exported.
Given the need for code customization, a deep level of expertise in Python and FORTRAN is
required to properly maintain a model, and an even deeper level of expertise is needed for
model development. It is recommended in Chapter 4 to define standard data interfaces and
standard data management functions applicable in a systematic manner to capture multiple
realization data in text files or databases. It is also recommended to write tutorials for model
developers. These standard functions and tutorials would help modelers to focus on the
development computational algorithms representing physical processes. Modelers would use
as-needed, predefined functions from SIAM libraries to build stochastic models. To make SIAM
accessible to a range of programmers learning would focus on the library functions and, to a
limited extent, Python. Currently, to implement a model following the xLPR-SIAM example,
extensive knowledge of object-oriented programming, Python, FORTRAN, and Python libraries
is needed. With respect to the aspect (iv), plotting capabilities, a mixed score was determined
in Chapter 4 for xLPR-SIAM. A well-structured systematic approach was identified for plotting
data output from the post-processing script EXPECTATION. In general, only few extra lines of
source code were needed, after capturing a time series in an external text file, to enable the
corresponding data to be available in pulldown menus in the SIAM GUI for the plots of outputs.
The identified shortcomings under (iv) are related to the lack of options to control the
appearance of plots and the lack of plots for single-value outputs for realization. Thus, effort is
needed to develop the back end of the SIAM frame (i.e., data management of multiple
realization outputs, and plotting of outputs) to make it a general frame for the construction of
stochastic models, accessible to a range of programmers with diverse experience. In
Chapter 5, it was recommended for SIAM to incorporate existing technologies for parallel
processing, especially during early development of xLPR. In contrast to xLPR-GoldSim, all of
the limitations pointed out in Chapters 2–5 for xLPR-SIAM can be addressed with extra coding
effort. SIAM offers potential for scalability and development of an integrated unit for a total
system risk analysis of piping cooling systems.

Thus, two future options are envisioned for xLPR. GoldSim offers convenience at the cost of
workarounds and the need for external tools. SIAM offers flexibility, scalability potential, and the
possibility to develop integrated units for total risk assessments; however, extra investment is
needed to build the frame to make it accessible to a range of programmers (from NRC and the
industry). To enhance the contrast of these two alternatives, the cost of use of GoldSim or
SIAM for NRC staff within the next 5 years was estimated. The unit of “cost” selected was the
time of use. A longer time would be associated with a frame that is more expensive to be used.
A time estimate, as opposed to a dollar quantity, was preferred, because such information can
be inferred more directly from the evaluation in Chapters 2 to 5. However, when a translation of
money into time was needed, a conversion of $250/hour was used.

The following assumptions were adopted to estimate the time of use.

Assumption 1: SIAM is polished to allow programmers within the NRC staff to use it.

Assumption 2: Every year, a module for failure of the cooling piping system is implemented.

Assumption 3: Every year, one NRC staff member is trained on the use of the frame to

ensure continuity (account for rotations and transfers).

6-3

Assumption 4: To translate time into money, the following equivalence was
used: 1 hour = $250.

Assumption 1, SIAM is further developed, is adopted for consistency with the expressed interest
of NRC staff to actively participate in model development. As discussed in Chapter 4, to make
SIAM accessible to a broader range of programmers, further development is recommended. If
this development is not adopted, then time estimates for the use of the SIAM frame would have
to be revised, as the time needed to attain enough familiarity would greatly increase.
Assumption 2, one module per year, conveys the point that xLPR is intended to move beyond
the pilot problem study. Assumption 3, more staff are trained every year, is adopted to account
for the possibility that NRC staff may go into rotation or be transferred to other divisions, and it
would be safer to spread the responsibility for model development among various members of
the NRC staff to ensure continuity and as a knowledge management strategy. Assumption 4,
1 hour = $250, was set to translate money into time for a few factors that incur direct costs
(e.g., cost of GoldSim licenses, cost of training by the GoldSim Technology Group LLC).

Time estimates were elicited from staff working on Chapters 2 to 5. The evaluators were asked
to estimate the minimum and maximum time to undertake a task. To account for uncertainty, it
was assumed that the actual task time could be any time between the minimum and maximum,
and follow a uniform distribution. Thus, the average time, μ, and variance, σ2, were computed
according to the equations

)(5.0 ba +=μ (6-1)

12

)(2
2 ab −=σ (6-2)

where a and b are the minimum and maximum time estimates. Time estimates for tasks for the
use of GoldSim and SIAM are summarized in Tables 6-1, 6-2, and 6-3.

Tables 6-1 and 6-2 summarize estimates of the time it would take the NRC staff to use the
GoldSim and SIAM frames. In the case of GoldSim (Table 6-1), it was assumed that GoldSim
Technology Group LLC would provide yearly training. It was also assumed that NRC staff
would use three GoldSim licenses to perform analyses and model development, and that staff
would pay for GoldSim license maintenance fees to have access to recent versions of GoldSim.
A conversion of $250/hour was used to translate dollars into hours. In the case of SIAM
(Table 6-2), the fact that SIAM libraries and dependencies are open source (i.e., are available at
no monetary cost) was accounted for. The main difference in Tables 6-1 and 6-2 is in the time
needed to launch runs and obtain data to perform analyses. For example, in the case of
GoldSim, it was considered that it could take up to 6 hours per run (modeler time, not runtime)
for a modeler to set the run, organize the data, and execute post-processing to derive
meaningful results. In the case of SIAM, it was considered that it could take a maximum of
1 hour, assuming the SIAM frame is developed to a mature state. On average, using
information in the Totals row in Tables 6-1 and 6-2, it is concluded that NRC staff would spend
less time using the SIAM frame, assuming SIAM is developed to a more mature state.

In computing the totals in the last row in Tables 6-1 and 6-2 some costs were assumed to be
incurred only once in a 5-year period (e.g., GoldSim licenses are purchased only once;
post-processing scripts to analyze GoldSim data are programmed only in the first year). These
tasks are labeled with the phrase “one-time cost” in Tables 6-1 and 6-2. All other tasks not

 6-4

T

ab
le

 6
-1

.
E

st
im

at
e

o
f

th
e

T
im

e
fo

r
G

o
ld

S
im

 U
se

 b
y

N
R

C
 S

ta
ff

T
as

k
M

in

(h
rs

)
M

ax

(h
rs

)
M

ea
n

(h

rs
)

V
ar

ia
n

ce

(h
r2)

S
. D

e
v.

(h

rs
)

D
ev

el
o

p
m

en
t

o
f

N
ew

 M
o

d
el

 f
o

r
F

ai
lu

re
 o

f
C

o
m

p
o

n
en

t
o

f
P

ip
in

g
 C

o
o

lin
g

 S
ys

te
m

 (
P

er
 Y

ea
r)

Im

pl
em

en
ta

tio
n

of
 n

ew
 m

od
el

 in
to

 fr
am

e,
 a

ss
um

in
g

m
at

he
m

at
ic

al
 a

lg
or

ith
m

s
ar

e
m

at
ur

e
20

0
40

0
30

0
3,

33
3.

33

57
.7

3

D
oc

um
en

ta
tio

n
to

 e
xe

cu
te

 th
e

m
od

el

12
0

16
0

14
0

13
3.

33

11
.5

5
T

ra
in

in
g

 (
P

er
 Y

ea
r)

H

iri
ng

 G
ol

dS
im

 T
ec

hn
ol

og
y

G
ro

up
 L

LC
 fo

r
4-

da
y

tr
ai

ni
ng

:
$1

0,
50

0
+

 tr
av

el

ex
pe

ns
es

 (
$2

,0
00

)
50

50

50

0.

00

0.
00

N
R

C
 s

ta
ff

pr
og

ra
m

m
er

 le
ar

ni
ng

 G
ol

dS
im

, F
O

R
T

R
A

N
 b

as
ic

s,
 a

nd
 D

LL
 in

te
rf

ac
e

40

12
0

80

53
3.

33

23
.0

9
C

o
d

e
U

se

O
bt

ai
n

da
ta

 to
 p

er
fo

rm
 a

na
ly

se
s;

 4
0

ru
n

ex
ec

ut
io

ns
 in

 a
 y

ea
r

(p
er

 y
ea

r)

40

24
0

14
0

3,
33

3.
33

57

.7
3

D
ev

el
op

 a
dd

iti
on

al
 s

cr
ip

ts
 to

 a
na

ly
ze

 d
at

a
(e

.g
.,

us
e

M
at

he
m

at
ic

a,
 M

at
la

b,
 E

xc
el

,
or

 o
th

er
 e

xt
er

na
l t

oo
l t

o
pe

rf
or

m
 c

om
pu

ta
tio

ns
).

 O
ne

-t
im

e
co

st
.

40

20
0

12
0

2,
13

3.
33

46

.1
9

D
ev

el
op

 a
dd

iti
on

al
 s

cr
ip

ts
 to

 c
om

pu
te

 c
or

re
la

tio
ns

.
O

ne
-t

im
e

co
st

.
40

20

0
12

0
2,

13
3.

33

46
.1

9
C

o
d

e
M

ai
n

te
n

an
ce

 (
P

er
 Y

ea
r)

E

m
ig

ra
te

 c
od

es
 to

 n
ew

er
 v

er
si

on
s

of
 G

ol
dS

im
®
 a

nd
 s

up
po

rt
in

g
lib

ra
rie

s—
on

ly
 if

ef

fo
rt

 is
 r

ea
so

na
bl

e
40

16

0
10

0
1,

20
0.

00

34
.6

4

T
es

tin
g

of
 e

m
ig

ra
te

d
ve

rs
io

ns

40

16
0

10
0

1,
20

0.
00

34

.6
4

L
ic

en
se

 C
o

st

Li
ce

ns
e

m
ai

nt
en

an
ce

 fe
e

(p
er

 y
ea

r)
.

A
ss

um
e

th
re

e
lic

en
se

s
ar

e
m

ai
nt

ai
ne

d.

$1
,6

00
 p

er
 li

ce
ns

e.

19
.2

19

.2

19
.2

0.

00

0.
00

3
G

ol
dS

im
 li

ce
ns

es
:

$3
,9

50
 p

er
 li

ce
ns

e.
 O

ne
-t

im
e

co
st

.
47

.4

47
.4

47

.4

0.
00

0.

00

T
o

ta
ls

T

o
ta

l T
im

e
D

u
ri

n
g

 5
-Y

ea
r

U
se

4,
93

3.
40

52

,9
33

.2
6

22
5.

98

 6-5

T

ab
le

 6
-2

.
E

st
im

at
e

o
f

th
e

T
im

e
fo

r
S

IA
M

 U
se

 b
y

N
R

C
 S

ta
ff

T
as

k
M

in

(h
rs

)
M

ax

(h
rs

)
M

ea
n

(h

rs
)

V
ar

ia
n

ce

(h
r2)

S
. D

e
v.

(h

rs
)

D
ev

el
o

p
m

en
t

o
f

N
ew

 M
o

d
el

 f
o

r
F

ai
lu

re
 o

f
C

o
m

p
o

n
en

t
o

f
P

ip
in

g
 C

o
o

lin
g

 S
ys

te
m

 (
P

er
 Y

ea
r)

Im

pl
em

en
ta

tio
n

of
 n

ew
 m

od
el

 in
to

 fr
am

e,
 a

ss
um

in
g

m
at

he
m

at
ic

al
 a

lg
or

ith
m

s
ar

e
m

at
ur

e
20

0
40

0
30

0
3,

33
3.

33

57
.7

3

D
oc

um
en

ta
tio

n
to

 e
xe

cu
te

 th
e

m
od

el

80

16
0

12
0

53
3.

33

23
.0

9
T

ra
in

in
g

 (
P

er
 Y

ea
r)

T

ra
in

in
g

N
R

C
 s

ta
ff

on
 u

se
 o

f S
IA

M
 fr

am
e

fo
r

de
ve

lo
pm

en
t o

f s
to

ch
as

tic
 m

od
el

s
40

80

60

13

3.
33

11

.5
5

T
ra

in
in

g
N

R
C

 s
ta

ff
pr

og
ra

m
m

er
 o

n
P

yt
ho

n,
 F

O
R

T
R

A
N

, a
nd

 P
yt

ho
n

lib
ra

rie
s

80

18
0

13
0

83
3.

33

28
.8

7
C

o
d

e
U

se
 (

P
er

 Y
ea

r)

O
bt

ai
n

da
ta

 to
 p

er
fo

rm
 a

na
ly

se
s;

 4
0

ru
n

ex
ec

ut
io

ns
 in

 a
 y

ea
r

20

40

30

33
.3

3
5.

77

D
ev

el
op

 a
dd

iti
on

al
 s

cr
ip

ts
 to

 a
na

ly
ze

 d
at

a
0

0
0.

0
0.

00

0.
00

D

ev
el

op
 a

dd
iti

on
al

 s
cr

ip
ts

 to
 c

om
pu

te
 c

or
re

la
tio

ns

0
0

0.
0

0.
00

0.

00

C
o

d
e

M
ai

n
te

n
an

ce
 (

P
er

 Y
ea

r)

E
m

ig
ra

te
 c

od
es

 to
 n

ew
er

 v
er

si
on

s
of

 P
yt

ho
n

an
d

su
pp

or
tin

g
lib

ra
rie

s—
on

ly
 if

ef

fo
rt

 is
 r

ea
so

na
bl

e
40

16

0
10

0
1,

20
0.

00

34
.6

4

T
es

tin
g

of
 e

m
ig

ra
te

d
ve

rs
io

ns

40

32
0

18
0

6,
53

3.
33

80

.8
3

L
ic

en
se

 C
o

st

Li
ce

ns
e

m
ai

nt
en

an
ce

 fe
e

0
0

0.
0

0.
00

0.

00

C
os

t p
er

 li
ce

ns
e

0
0

0.
0

0.
00

0.

00

T
ot

al
s

T
o

ta
l T

im
e

D
u

ri
n

g
 5

-Y
ea

r
U

se

4,

60
0.

00

62
,9

99
.9

0
25

1.
00

 6-6

T

ab
le

 6
-3

.
E

st
im

at
e

o
f

T
im

e
T

o
 F

in
al

iz
e

th
e

S
IA

M
 F

ra
m

e

T
as

k
M

in

(h
rs

)
M

ax

(h
rs

)
M

ea
n

(h

rs
)

V
ar

ia
n

ce

(h
r2)

S
. D

e
v.

(h

rs
)

M
ak

e
da

ta
 m

an
ag

em
en

t o
f o

ut
pu

ts
 s

ta
nd

ar
d

an
d

sy
st

em
at

ic
.

S
ee

re

co
m

m
en

da
tio

ns
 in

 C
ha

pt
er

 4
.

24
0

60
0

42
0

10
,8

00

10
3.

92

E
nh

an
ce

 p
lo

tti
ng

 c
ap

ab
ili

tie
s

(e
.g

.,
al

lo
w

 fo
r

us
er

 c
on

tr
ol

 o
f p

lo
tti

ng
 o

pt
io

ns
, p

lo
ts

of

 s
in

gl
e-

va
lu

e
ou

tp
ut

s
pe

r
re

al
iz

at
io

n,
 h

or
se

-t
ai

l p
lo

ts
).

 S
ee

 r
ec

om
m

en
da

tio
ns

 in

C
ha

pt
er

 2
.

16
0

32
0

24
0

2,
13

3.
33

46

.1
9

A
llo

w
 fo

r
de

te
rm

in
is

tic
 r

un
s

w
ith

 u
se

r-
de

fin
ed

 in
pu

ts
 o

r
st

oc
ha

st
ic

 v
ar

ia
bl

es
 fi

xe
d

at
 a

 q
ua

nt
ile

 o
r

m
ea

n
va

lu
es

.
S

ee
 r

ec
om

m
en

da
tio

ns
 in

 C
ha

pt
er

 2
.

40

16
0

10
0

1,
20

0.
00

34

.6
4

P
ar

al
le

liz
e

xL
P

R
. S

ee
 r

ec
om

m
en

da
tio

ns
 in

 C
ha

pt
er

 5
.

20
0

48
0

34
0

6,
53

3.
33

80

.8
3

C
om

pu
te

 c
or

re
la

tio
ns

 b
et

w
ee

n
si

ng
le

-v
al

ue
 in

pu
ts

 a
nd

 s
in

gl
e-

va
lu

e
ou

tp
ut

s
(c

on
si

de
rin

g
ep

is
te

m
ic

-a
le

at
or

y
re

al
iz

at
io

n
sp

lit
).

 S
or

t p
ar

am
et

er
s

by
 c

or
re

la
tio

n
va

lu
e

to
 s

up
po

rt
 s

en
si

tiv
ity

 a
na

ly
se

s.
 C

on
si

de
r

ra
nk

 c
or

re
la

tio
ns

 a
nd

 r
aw

 d
at

a
co

rr
el

at
io

ns
.

S
ee

 r
ec

om
m

en
da

tio
ns

 in
 C

ha
pt

er
 4

.

80

32
0

20
0

4,
80

0.
00

69

.2
8

M
od

ify
 S

IA
M

 t
o

fa
ci

lit
at

e
th

e
us

e
of

 r
ea

di
ly

 a
va

ila
bl

e
ex

te
rn

al
 o

pt
im

iz
at

io
n

or

pa
ra

m
et

er
 e

st
im

at
io

n
to

ol
s.

 S
ee

 r
ec

om
m

en
da

tio
ns

 in
 C

ha
pt

er
 5

.
80

24

0
16

0
2,

13
3.

33

46
.1

9

D
oc

um
en

t S
IA

M
 fo

r
pr

og
ra

m
m

er
s

(u
se

rs
 o

f t
he

 S
IA

M
 f

ra
m

e
to

 d
ev

el
op

 o
th

er

m
od

el
s)

. E
nh

an
ce

 in
te

rn
al

 d
oc

um
en

ta
tio

n
by

 c
on

si
st

en
t u

se
 o

f d
oc

st
rin

gs
 in

P

yt
ho

n
ob

je
ct

s.
 D

ev
el

op
 tu

to
ria

ls
 fo

r
(i)

 a
dd

in
g

st
oc

ha
st

ic
 in

pu
t p

ar
am

et
er

s,

(ii
)

m
an

ag
in

g
m

ul
tip

le
-r

ea
liz

at
io

n
ou

tp
ut

s
(e

.g
.,

si
ng

le
 v

al
ue

, t
im

e
se

rie
s,

 m
at

rix

ou
tp

ut
s)

, a
nd

 (
iii

)
gr

ap
hi

c
di

sp
la

y
of

 m
u

lti
pl

e-
re

al
iz

at
io

n
in

pu
ts

 a
nd

 o
ut

pu
ts

(e

.g
.,

P
D

F
, C

D
F

, o
ut

pu
t v

er
su

s
tim

e)
.

D
e

ve
lo

p
tu

to
ria

ls
 fo

r
th

e
co

ns
is

te
nt

 u
se

 o
f

pa
ra

lle
liz

at
io

n
fu

nc
tio

ns
.

P
ro

vi
de

 e
xa

m
pl

es
 o

n
ho

w
 to

 in
te

rf
ac

e
w

ith
 G

U
Is

. S
ee

re

co
m

m
en

da
tio

ns
 in

 C
ha

pt
er

s
3,

 4
, 5

.

24
0

56
0

40
0

8,
53

3.
33

92

.3
8

T
ot

al
s

T
o

ta
l D

ev
el

o
p

m
en

t
T

im
e

1,
86

0.
00

36

,1
33

.3
2

19
0.

09

T
o

ta
l T

im
e

In
cl

u
d

in
g

 T
o

ta
ls

 f
ro

m
 T

ab
le

 6
.2

6,

46
0.

00

99
,1

33
.2

2
31

4.
85

4

6-7

including the “one-time cost” label are assumed performed every year. The total average and
variance in the last row in Tables 6-1 and 6-2, assumed that some tasks are performed once
and other tasks are performed every year in the 5-year period. The total mean and total
variance are the sums of the means and variances of the tasks performed in the 5-year period.

The time to develop SIAM to a mature state needs to be considered as does the need to obtain
total estimates for the cost of the SIAM frame. Table 6-3 provides estimates of the time needed
for SIAM developers to complete the frame. Recommendations provided in Chapters 2 to 5
were used in defining the entries in Table 6-3. The total mean time and total variance are
included in the last row in Table 6-3 (including totals from Table 6-2). When the SIAM
development time is taken into account, the total time associated with the use of the SIAM
frame exceeds the time associated with the use of the GoldSim frame by approximately
30 percent.

Figure 6-1 shows approximate probability distributions for the time associated with the use of
the GoldSim and SIAM frames in a 5-year period. For SIAM, the distributions include the
upgront development needed to complete the development of the frame. The distributions are
assumed to be normal (a reasonable assumption given the central limit theorem and the large
number of entries in the sum to compute total times), with means and standard deviations as in
the last rows in Tables 6-1 and 6-3.

Conclusion

It is concluded that use of the SIAM frame over a 5-year period would be more expensive than
use of the GoldSim frame, under a set of defined assumptions. On average, SIAM was
estimated to be approximately 30 percent more expensive. The estimated range of costs,
expressed in time, is presented in Figure 6.1. On the other hand, it is estimated that NRC staff
would spend less time using the SIAM frame (provided SIAM is developed to a more mature
state) than using the GoldSim frame. SIAM would be expected to be developed to a stage such
that models would automatically incorporate tools for post-processing, making the use of SIAM
more convenient. In contrast, significant user intervention is expected in GoldSim models to
analyze and interpret output data, unless GoldSim Technology Group LLC develops an
approach to access and manipulate data stored in model files that does not require exporting to
external text files (and addresses other limitations noted in Chapters 2 to 5).

Therefore, NRC staff may opt to spend more to sponsor the development and use of SIAM to
gain flexibility and convenience. Appropriate consideration should be given to the risk and cost
of software development (especially in the absence of a commercial entity committed to
long-term support and software maintenance) and frequent change in hardware, operating
systems, and third-party software.

NRC staff may opt to use GoldSim and save some resources, at the cost of more user
intervention, to execute models and analyze output data. NRC staff may request that GoldSim
Technology Group LLC enhance flexibility in model development and enhance access to data
stored in model files. It is unclear how difficult it would be for the GoldSim Technology Group
LLC to address the shortcomings noted in Chapters 2 to 5. Contact with GoldSim Technology
Group LLC is recommended to determine whether those shortcomings could be addressed in
future versions of GoldSim.

6-8

Figure 6-1. Time Estimates for the Cost of Using the GoldSim and SIAM Frames in a
5-Year Period, Expressed as Probability Distribution and Cumulative

Distribution Functions

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

4000 5000 6000 7000 8000

SIAM

GoldSim

Cost Estimate of Frame Use in Hours (5-Year Period)

PD
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4000 5000 6000 7000 8000

SIAM

GoldSim

Cost Estimate of Frame Use in Hours (5-Year Period)

CD
F

7-1

7 REFERENCES

(Some open software does not have a publisher or specific author. In that case, the name of
the software and website is provided as reference.)

Adams, B.M., W.J. Bohnhoff, K.R. Dalbey, J.P. Eddy, M.S. Eldred, D.M. Gay, K. Haskell,
P.D. Hough, and L.P. Swiler. “DAKOTA, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis,
Version 5.1 User’s Manual.” SAND2010–2183. Albuquerque, New Mexico: Sandia National
Laboratories. 2010.

Brandl, G. “Sphinx—Python Documentation Generator.” 2011. <http://sphinx.pocoo.org/>

GoldSim Technology Group LLC. “GoldSim, Version 10.11.” <www.GoldSim.com>
Issaquah, Washington: GoldSim Technology Group. 2011.

Klasky, H.B., P.T. Williams, B.R. Bass, and S. Yin. “SIAM-xLPR Version 1.0 Framework
Report.” ORNL/NRC/LTR–248. Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010.

Loper, E. “Epydoc—Automatic API Documentation Generation for Python.” 2011.
<http://epydoc.sourceforge.net/>

Mattie, P.D., C.J. Sallaberry, J.C. Helton, and D.A. Kalinich. “Development, Analysis, and
Evaluation of a Commercial Software Framework for the Study of Extremely Low Probability
of Rupture (xLPR) Events at Nuclear Power Plants.” SAND2010–8480. Albuquerque,
New Mexico: Sandia National Laboratories. 2010.

NRC and EPRI. “xLPR Version 1.0 Report, Technical Basis and Pilot Study Problem Results.”
Washington, DC: NRC, Office of Nuclear Regulatory Research and Palo Alto, California:
EPRI. 2011.

Python Software Foundation. “pydoc—Documentation Generator and Online Help System.”
Python Programming Language—Official Website. 2011a. <http://docs.python.org/release/
2.6.6/library/pydoc.html?highlight=pydoc#module-pydoc>

Python Software Foundation. “doctest—Test interactive Python examples.” Python
Programming Language—Official Website. 2011b. <http://docs.python.org/release/2.6.6/
library/doctest.html?highlight=doctest#module-doctest>

Python Software Foundation. “Built-in Functions.” Python Programming Language—Official
Website. 2011c. <http://docs.python.org/release/2.6.6/library/functions.html>

Rathmann, U. “Qwt—Qt Widgets for Technical Applications.” 2011.
<http://qwt.sourceforge.net/>

Riverbank Computing Limited. “PyQt4.” <http://www.riverbankcomputing.co.uk/
software/pyqt/intro> Wimborne, Dorset, United Kingdom: Riverbank Computing Limited. 2011.

7-2

Swiler, L.P. and G.D. Wyss. “A User’s Guide to Sandia’s Latin Hypercube Sampling Software:
LHS Unix Library/Standalone Version.” SAND2004–2439. Albuquerque, New Mexico: Sandia
National Laboratories. 2004.

Vermeulen, G. “PyQwt Plots Data With Numerical Python and PyQt.” 2011.
<http://pyqwt.sourceforge.net/>

APPENDIX A

A–1

A1 SOFTWARE QUALITY ASSURANCE

A1.1 Background

10 CFR Part 50, Appendix B identifies a number of requirements applicable to software used in
safety-related applications. Criterion II states, in part, that activities affecting quality must be
accomplished under suitably controlled conditions and that the quality assurance program shall
provide control over activities affecting the quality of the identified structures, systems, and
components, to an extent consistent with their importance to safety. Controlled conditions
include use of appropriate equipment, suitable environmental conditions for accomplishing the
activity, and assurance that all prerequisites have been satisfied. Criterion III requires, in part,
that design control measures provide for verifying or checking the adequacy of the design.
Essentially, 10 CFR Part 50, Appendix B requires that software used in safety-related
applications must be controlled to an extent consistent with its importance to safety.

U.S. Nuclear Regulatory Commission (NRC) has endorsed industry guidance relating to quality
assurance in Regulatory Guide 1.28 (NRC, 2010) in ASME NQA–1a–2009 Addenda
(ASME, 2009). NQA–1, Requirement 3, Section 401 states in part that

(a) “The computer program shall be verified to show that it produces
correct solutions for the encoded mathematical model within the
limits for each parameter employed,

(b) The encoded mathematical model shall be shown to produce a
valid solution to the physical problem associated with the
particular application.”

Further requirements are provided in NQA–1, Subpart 2.7 for “the acquisition, development,
operation, maintenance, and retirement of software.” NQA–1 Subpart 2.7 follows the common
software quality assurance industry approach of identifying formal quality assurance controls
associated with each of the software development life cycle phases: (i) design requirements
definition, (ii) design, (iii) implementation, (iv) test, and sometimes (v) installation. For the
software life cycle phases, requirements are identified for documentation, review, software
configuration management (CM), and problem reporting and resolution.

For software to be used in safety-related applications, the software quality assurance program
must establish and implement controls to an extent necessary to demonstrate that the computer
program produces correct solutions for the encoded mathematical model within the limits for
each parameter employed (generally described as software verification and validation) and the
encoded mathematical model produces a valid solution to the physical problem associated with
the particular application (generally described as model validation).

A–2

A2 SOFTWARE QUALITY ASSURANCE FOR EXTREMELY LOW
PROBABILITY OF RUPTURE

A2.1 Extremely Low Probability of Rupture Project Pilot Study
 Quality Assurance

The approach to quality assurance during the extremely low probability of rupture (xLPR) pilot
study is described in (Sandia National Laboratories, 2009). The CM plan addresses the xLPR
program commitment to implement the four key principles of CM as follows:

• Configuration Identification: Identify and name each major piece of the model. In the

remainder of this plan, these major pieces of the model are referred to as configuration
items (CIs).

• Configuration Control: Control changes to the CIs.

• Status Accounting: Track the status of the CIs.

• Verification and Audit: Confirm that the previous three principles are being

implemented correctly.

The CM further describes the verification and audit as including

• Model checking
• Software qualification checking
• Independent verification and validation
• Model file set verification
• Software verification checking of modules
• Data verification (input values)
• Model input independent verification and validation
• Model output graphic/plot checking

The two program participants (Sandia National Laboratories and Oak Ridge National
Laboratory) developed and employed documented desktop instructions and standard forms and
templates (including checklists) that facilitated implementation of the CM plan. Desktop
instructions addressed

• Programming practices
• Model development CM
• Model parameters
• Model changes
• Model documentation and checking
• Model output plot preparation

The participants also employed the software tools Microsoft® SharePoint®
(Microsoft Corporation, 2010) and Mercurial (O’Sullivan, 2009) for CM and to facilitate
collaborative model and code development.

A–3

The pilot study quality assurance practices centered on CM and checking and did not attempt to
implement the full range of NQA–1, Subpart 2.7 software quality assurance requirements. The
focus on CM and checking is appropriate considering the prototyping nature of the pilot study
and the expectation of full scope, formal quality assurance controls in subsequent development
projects. In regard to model validation, the pilot study included preparation and execution of
several deterministic test problems.

A2.2 Software Quality Assurance for Future Extremely Low Probability
 of Rupture Development

Preparation of software quality assurance plans addressing the full range of NQA–1, Subpart
2.7 requirements should be the first step in subsequent development of xLPR software.
Considering the complexity and uncertainties in the mathematical models employed in the xLPR
software, the greatest challenge may be in defining model validation “to an extent consistent
with its importance to safety.” In the face of large uncertainties, an expert panel of peer
reviewers, such as described in NUREG–1297 (NRC, 1988) may provide additional confidence
for model validation. NUREG–1297 suggests that “a peer review should be used when the
adequacy of information (e.g., data, interpretations, test results, design assumptions, etc.) or the
suitability of procedures and methods essential to showing that the … system meets or exceeds
performance requirements ... [that] cannot otherwise be established through testing, alternate
calculations, or reference to previously established standards and practices.” Alternatively, an
expert elicitation such as that described in NUREG–1563 (NRC, 1996) could be employed to
obtain expert judgments in a formal, highly structured approach that may provide greater
confidence in the model validation approach. Thorough documentation and reporting of peer
reviews and expert elicitations may be used in shareholder interactions to facilitate acceptance
of the xLPR model as a valid design verification tool.

Other considerations for model validation should include the following.

• Model development and validation should be integrated in the requirements definition life

cycle phase so that the mathematical model is as accurate as possible prior to starting
the software design phase.

• Model development and validation should consider all potential sources of uncertainty in
the physical system being represented and in the mathematical model.

• Stringent change controls should be applied if the mathematical model is refined after

the requirements definition life cycle phase to ensure that changed requirements are
properly implemented throughout.

• Validation testing should include comparison of model results with field data and

laboratory experiments whenever possible.

Considerations for other areas of software quality assurance should include the following.

• The xLPR Project Pilot Study followed several good practices that should be carried on

in future xLPR development, including use of documented desktop instructions and
forms and templates.

A–4

• CM tool selection for use in subsequent xLPR development should be based on needs
for developing a finished software product, which can be much different from the needs
for prototype development.

A2.3 Summary

NQA–1, Subpart 2.7 provides appropriate software quality assurance requirements for future
xLPR software development. Robust model validation is an essential quality assurance element
for software intended for safety-related design analyses. Peer reviews and expert elicitations
supporting model validation activities can be used to develop the necessary confidence in the
xLPR mathematical models in their functions as producing valid solutions to the physical
problem associated with the particular application.

A3 EXTREMELY LOW PROBABILITY OF RUPTURE
MODEL VALIDATION

A3.1 Introduction

The purpose of model validation is to evaluate whether the deterministic, physical models coded
into the computer program xLPR accurately predict the physical behavior for which they are
intended. Two possible types of validation could be performed:

1. Experimental validation based on using measured full-scale (e.g., pipe) or small-scale
(e.g., laboratory coupon) test data. Although full-scale tests can be very costly, there are
frequently problems of transferring small-scale test data to validate physical models
applied to full-scale components.

2. Analytical validation based on using accepted analytical tools (e.g., finite element codes)

as accurate predictions of experimental behavior (e.g., displacement response of pipe to
applied loads) and physical quantities [e.g., crack tip driving forces such as the J-Integral
(J) and Crack Opening Displacement (COD)].

These two forms of validation testing are consistent with the quality assurance program
in Subsection A2.2 (i.e., testing should include comparison of model results with
laboratory experiments).

A3.2 Validation Topics

The following approaches would be used to validate modeling concepts and deterministic
methods used in a number of modules contained in the xLPR code. The approaches
presented in this section serve to provide a robust model validation, which, as discussed in
Subsection A2.2, is considered an essential part of the quality assurance program for software
intended for safety-related design analyses.

A3.2.1 Geometrical Modeling Issues: Representing a Surge Nozzle by a Pipe

Currently, xLPR uses the General Electric/Electric Power Research Institute (GE/EPRI) method
for determining the necessary fracture parameters and the LBB.ENG2 method for elastic-plastic

A–5

fracture mechanics. For simplicity, these methods are based upon the geometry of a pipe. The
analytical equations are expressed in terms of various wall thicknesses and radii. However, it
would be useful to evaluate how well the current analytical models in xLPR based on relatively
simple pipe geometries compare with the behavior of the geometrically more complex
surge nozzles.

Therefore, validation would identify under what circumstances the approximate geometry
modeling used in xLPR is conservative or nonconservative. The validation would involve
comparing finite element results for various fracture parameters used in critical crack and
leak-before-break assessments using both cracked surge nozzle and pipe geometries.

Specific topics to be addressed in this validation are outlined next.

A3.2.2 Through-Wall Cracks

The validation exercise would involve using finite element analyses to calculate J and measure
COD and crack areas of through-wall cracks in dissimilar welds in a surge nozzle and a pipe
under bending, axial force, and internal pressure and comparing these results with xLPR
LBB.ENG2 predictions. The validation would be performed using finite element analyses
because performing experiments could be problematic (e.g., the high cost of fabricating
full-scale surge nozzles including welding and technical difficulties such as the need to fabricate
sharp through-wall cracks).

A3.2.3 Surface Cracks

Currently, xLPR employs semi-elliptical surface crack limit load solutions for cracks in pipes
based upon the work of Rahmann (1998). For generality, xLPR should be able to determine the
surface crack stability failure condition under conditions that could promote failures before the
limit load is reached. EPRI (2011) acknowledges this lack of generality and also states that an
elastic-plastic fracture-mechanics-based approach will be required. However, no specific
methodology for the elastic-plastic fracture mechanics calculations is currently proposed
(EPRI, 2011).

Therefore, for different types of surface cracks, plastic collapse loads would be determined
using finite element models of surge nozzles and pipes subjected to bending, axial force, and
pressure loads. The finite-element-derived plastic collapse loads would be compared to the
values predicted using the pipe solutions in xLPR to assess their accuracy.

A3.2.4 Load Modeling Issues: Representing Pressure Effects as an Axial Force

The xLPR code allows for the effects of internal pressure on fracture mechanics parameters by
applying an axial load equal to the axial load exerted by the pressure on the ends of a closed
pipe and the extra axial force that arises by the pressure acting on the faces of internal surface
cracks. This approach is adequate for calculating linear elastic fracture parameters for
circumferential cracks, but it has serious limitations for cracks under elastic-plastic and plastic
collapse conditions. The most serious limitation is that plastic yielding in pressurized pipes is
dominated by the hoop stress induced by the pressure, and the current approach in xLPR
ignores this. (Of lesser concern is the effect of the moment produced by the pressure acting on
the crack faces.) Hoop stress may be important when the pressure is high or the pipe is subject
to high temperature, (e.g., this may lead to creep effects) (Kim, et al., 2002). Therefore, it is

A–6

considered important that the calculation of J and COD estimates for through-wall cracks
includes the internal pressure component (Kim, et al., 2002). The results of Lei and Budden
(2004) illustrate the important role the hoop stress plays on limit load predictions. Therefore, it
is important that the effects of the hoop stress arising from internal pressure on the
elastic-plastic fracture mechanics parameters xLPR employs (such as J, COD, and limit load
solutions) be determined for through-wall and surface cracks to assess potential
nonconservative elements in that code. This validation exercise can be efficiently accomplished
by combining the finite element investigation of geometrical modeling issues described in
Subsection A3.2.1 with a parallel finite element investigation of pressure effects. The finite
element models built as part of the Subsection A3.2.1 work can be utilized in the finite element
investigations described in this section.

A3.2.5 Material Modeling Issues: Representing Dissimilar Weld Stress-Strain

Behavior by the Ramberg-Osgood Equation

A3.2.5.1 Ramberg-Osgood Equation

An approach for performing simple J and COD estimation calculations is the well-known
GE/EPRI method. The GE/EPRI model is based on the Ramberg-Osgood material model in
which the coefficient and strain hardening index is used as input for representing the material’s
stress-strain behavior. However, there is a potential problem in using the Ramberg-Osgood
model and limiting J and COD analyses to this type of stress-strain behavior. Specifically, the
problem is the ability of the Ramberg-Osgood model to accurately capture the measured
stress-strain behavior (Brust, 1987; Gilles and Brust, 1991). Kim, et al. (2004),
Chattopadhyay (2006), and Huh, et al. (2006) discuss how the J estimates are sensitive to the
accuracy of data fitting using the Ramberg-Osgood model.

Currently, the xLPR developers do not appear to address uncertainties related to representing
stress-strain behavior by Ramberg-Osgood equations.

Therefore, it would be appropriate to validate the accuracy of xLPR results because they
depend on fitting Ramberg-Osgood stress-strain curves to the stress-strain data. Validation
would involve evaluating finite element predictions of key parameters (e.g., J, crack areas) using
actual measured stress-strain curves as input and comparing these results with the
corresponding predictions of xLPR. Finite element models built as part of the work performed in
Subsection A3.2.1 would be utilized in the finite element calculations outlined in this section.

A3.2.5.2 Dissimilar Welds

The current approach used in xLPR to assess cracked dissimilar welds is to use the
stress-strain behavior of the base metal and the fracture properties of the weld metal. Support
for this approach is cited based on comparison of predicted and experimentally measured
fracture behaviors. However, this justification is not substantiated through analysis of cracks in
the welds of surge nozzles. It is proposed that the issue of dissimilar metal welds [i.e., what is
the most appropriate stress-strain curve to use (the weld or base or a combination of the two)]
be investigated through finite element analysis of cracks in the welds of surge nozzles and
pipes. This activity would be performed in conjunction with the finite-element-based
investigations in Subsection A3.2.1.

A–7

A3.2.6 Crack Growth Rate Modeling Issues

The current crack growth rate model in xLPR is the MRP–115 model (EPRI, 2004). This model
is a function of temperature and the stress intensity factor (K). Investigation of primary water
stress corrosion cracking (PWSCC) crack growth is given in White, et al. (2008) and MRP–216
(EPRI, 2007), which include welding residual stresses. The methodology of White, et al. (2008)
and MRP–216 (EPRI, 2007) is based on the use of linear elastic fracture mechanics to calculate
K used in the MRP–115 model.

There are three issues related to crack growth rate modeling in xLPR that are of concern. First,
as pointed out in EPRI (2011), there are limitations regarding the use of K (which is based on
linear elastic fracture mechanics) to characterize stress corrosion cracking (SCC) rates in
situations involving significant crack tip plasticity. The most important source of stress driving
SCC in surge nozzles is welding residual stresses. The presence of high residual stresses may
result in plasticity that could affect the validity of using the K for calculating crack growth rates
(EPRI, 2011). Second, if crack tip plasticity effects are important, then the question arises as to
what fracture mechanics parameter should be used to characterize SCC rates under these
conditions. Third, after initiating, SCCs are small. It is known that the propagation rates of
small cracks under cyclic loading conditions tend to be underpredicted by fatigue crack
propagation rates measured on coupons containing relatively long cracks when the rates are
characterized in terms of cyclic K. Although SCC occurs under static, as opposed to cyclic,
loading conditions, the possibility that observations regarding fatigue crack growth rates of small
cracks being larger than those of long cracks under similar crack tip loading conditions may also
carry over to SCC of small and long cracks and needs to be addressed.

A3.2.7 Crack Tip Plasticity

The use of K can result in an underestimation of SCC rates if this parameter is used to
characterize SCC rates when loading conditions cause significant crack tip plasticity. Under
these conditions, J is the more appropriate fracture mechanics parameter to use. Finite element
analysis of cracked surge nozzles in the presence of simulated welding residual stresses can be
performed to establish whether crack tip plasticity effects are important. Typical residual
stresses would be generated in the finite element models based on treating these stresses as
initial strains, similarly to how thermal stresses are represented by thermal strains resulting from
a temperature field. The through-wall residual stress variations presented in xLPR documents
would be used to guide the choice of residual stresses to be used in this activity.

Solutions for J would be computed for cracks in linear elastic and elastic-plastic materials under
similar loading conditions, and the results would be compared to assess the effects of plasticity
on the crack tip driving force. Because SCC models are nonlinear functions of K, the J values
can be converted to equivalent (plastically corrected) K values and computational simulations of
crack growth in welded surge nozzles would be performed to establish the influence of crack tip
plasticity on SCC lifetimes. Validation of the xLPR approach of using K can be accomplished if
the difference in the two sets of predicted lifetimes (one set based on K and the other on a
plastically corrected K) is acceptably small. If the result of this validation is not acceptable,
then this activity could provide data to assist in modifying the linear elastic approach adopted
in xLPR.

A–8

A3.2.8 Characterization of Stress Corrosion Cracking Rates When K Is
 Not Valid

If the results of the validation exercise performed in Subsection A3.2.7 demonstrate that K is not
the appropriate parameter to use for calculating growth rates for cracks in the welds of surge
nozzles due to the effects of high residual stresses, then it would be useful to experimentally
compare SCC rates under linear elastic conditions with rates measured under elastic-plastic
conditions to establish that J is the appropriate fracture parameter to characterize PWSCC
rates. These tests need not involve residual stresses, because the intent would be to establish
the principle that J (or an equivalent plastically corrected K) enables SCC rates to be
extrapolated from the linear elastic regime (where J is directly related to K2) into the
elastic-plastic regime. Substantiation of this extrapolation would validate the use of J as a
characterizing parameter for SCC.

A3.2.9 Small Cracks

Another important aspect of SCC crack growth is the effect of small cracks because any small
crack enhancements to the SCC rates based on measurements made on long cracks will make
xLPR predictions nonconservative.

One potential small crack problem is that when a crack is small, the crack tip plastic zone
may be of the same size as the crack, which would make linear elastic fracture mechanics
invalid (Miller, 1982; Smith, 1977; Anderson, 2005). This issue, the replacement of K by an
elastic-plastic fracture mechanics parameters such as J when crack tip plasticity is significant, is
similar to the validation issue addressed in Subsection A3.2.7 and would be resolved by the
work proposed in that section.

Another potential small crack problem is that under environmentally assisted cracking
conditions, small crack effects on growth rates may be occurring that are not related to crack tip
plasticity issues, such as possible changes between long crack and small crack growth behavior
due to differences in electrochemical reactions at the tips of these two kinds of cracks
(Anderson, 2005). To resolve this issue, small-scale coupon tests would be used to validate the
applicability of the PWSCC equations used in xLPR in the small crack regime. These tests
would be performed under loading conditions that induce crack tip driving forces that are typical
of the values likely to be encountered by small cracks in the welds of surge nozzles. The test
environment (temperature and water chemistry) would be similar to that experienced by small
cracks at surge nozzles.

A4 References

Anderson, T.L. Fracture Mechanics: Fundamentals and Applications. Boca Raton, Florida:
CRC Press. 2005.

ASME. “Quality Assurance Requirements for Computer Software for Nuclear Facility
Applications.” ASME NQA–1a–2009 Addenda to ASME NQA–1–2008 Edition. New York City,
New York: American Society of Mechanical Engineers. 2009.

Brust, F.W. NUREG/CR–4853, BMI–2145, “Approximate Methods for Fracture Analysis of
Through-Wall Cracked Pipes.” Washington, DC: NRC, Office of Nuclear Regulatory Research.
1987.

A–9

Chattopadhyay, J. “Improved J and COD Estimation by GE/EPRI Method in Elastic to Fully
Plastic Transition Zone.” Engineering Fracture Mechanics. Vol. 73. pp. 1,959–1,979. 2006.

EPRI. “Materials Reliability Program: Models and Inputs Selected for Use in the xLPR Pilot
Study (MRP–302).” Palo Alto, California: EPRI. 2011.

EPRI. “Material Reliability Program: Advanced FEA Evaluation of Growth and Postulated
Circumferential PWSCC Flaws in Pressurizer Nozzle Dissimilar Metal Welds (MRP–216).”
Palo Alto, California: EPRI. 2007.

EPRI. “Materials Reliability Program: Crack Growth Rates for Evaluating Primary Water Stress
Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Welds (MRP–115).”
Palo Alto, California: EPRI. 2004.

Gilles, P. and F.W. Brust. “Approximate Fracture Methods for Pipes—Part I: Theory.” Nuclear
Engineering and Design. Vol. 127. pp. 1–17. 1991.

Huh, N.-S., Y.-J. Kim, and K.-B. Yoon. “Influence of Ramberg-Osgood Fitting on the
Determination of Plastic Displacement Rates in Creep Crack Growth Testing.” Fatigue and
Fracture of Engineering Materials and Structures. Vol. 30. pp. 277–286. 2006.

Kim, Y.-J., N.-S. Huh, Y.-J. Kim, Y.-H. Choi, and J.-S. Yang. “On Relevant Ramberg-Osgood
Fit to Engineering Nonlinear Fracture Mechanics Analysis.” Journal of Pressure Vessel
Technology. Vol. 126. pp. 277–283. 2004.

Kim, Y.-J., N.-S. Huh, and Y.-J. Kim. “Quantification of Pressure-Induced Hoop Stress Effect on
Fracture Analysis of Circumferential Through-Wall Cracked Pipes.” Engineering Fracture
Mechanics. Vol. 69. pp. 1,249–1,267. 2002.

Lei, Y. and P.J. Budden. “Limit Load Solutions for Thin-Walled Cylinders With Circumferential
Cracks Under Combined Internal Pressure, Axial Tension and Bending.” Journal of Strain
Analysis. Vol. 39. pp. 673–683. 2004.

Microsoft Corporation. “Microsoft® SharePoint®.” Redmond, Washington: Microsoft
Corporation. 2010.

Miller, K.J. “The Short Crack Problem.” Fatigue of Engineering Materials and Structures.
Vol. 5. pp. 223–232. 1982.

NRC. Regulatory Guide 1.28, Rev. 4, “Quality Assurance Program Requirements (Design and
Construction).” Washington, DC: NRC. 2010.

NRC. NUREG–1563, “Branch Technical Position on the Use of Expert Elicitation in the
High-Level Radioactive Waste Program.” Washington, DC: NRC. 1996.

NRC. NUREG–1297, “Peer Review for High-Level Nuclear Waste Repositories.”
Washington, DC: NRC. 1988.

O’Sullivan, B. “Mercurial: The Definitive Guide.” Sebastopol, California: O’Reilly Media, Inc.
June 2009.

A–10

Rahmann, S. “Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part II:
Idealized Cracks and Closed-Form Solutions.” Engineering Fracture Mechanics. Vol. 61.
pp. 213–230. 1998.

Sandia National Laboratories. “xLPR Configuration Management Plan, R0.”
Albuquerque, New Mexico: Sandia National Laboratories. 2009.

Smith, R.A. “On the Short Crack Limitations of Fracture Mechanics.” International Journal of
Fracture. Vol. 13. pp. 717–720. 1977.

White, G., J. Broussard, J. Collin, M. Klug, C. Harrington, and G. DeBoo. “Advanced FEA
Modeling of PWSCC Crack Growth in PWR Dissimilar Metal Piping Butt Welds and Application
to the Industry Inspection and Mitigation Program.” Proceedings of the PVP2008 ASME
Pressure Vessels and Piping Division Conference, Chicago, Illinois, July 27–31, 2008.
Paper No. PVP2008–61616. New York City, New York: American Society of Mechanical
Engineers. 2008.

APPENDIX B

B–1

B1 VERIFICATION OF xLPR DETERMINISTIC MODULES

B1.1 Introduction

The purpose of this appendix is to present the verification results for the different deterministic
modules contained within the extremely low probability of rupture (xLPR) code.

This section presents a brief overview of the xLPR code structure, verification approach, and
testing platforms. Section B2 details the results of the verification testing performed on each
xLPR module. Finally, Section B3 will present a summary of findings and conclusions with
respect to the verification testing.

B1.1.1 The xLPR Code Structure

This section focuses on the modules that are called within the xLPR time loop as shown in
Figure B–1 (Klasky, et al., 2010). As part of the xLPR probabilistic framework, the time loop is
contained within the epistemic and aleatory loops [refer to U.S. Nuclear Regulatory Commission
and Electric Power Research Institute (2011) for further details].

xLPR modules that were subjected to verification testing are listed in Table B–1. Note that the
only module contained within the xLPR time loop that was not included in the verification testing
was the leakage rate module, SQUIRT_v1.1.f90. This module was not included, because it is
undergoing modifications by the xLPR working group.

The input and output for each module listed in Table B–1 will be detailed in Section B2.

B1.1.2 Verification Approach

The approach taken for performing the verification was to (i) spot check the source code by
comparing the FORTRAN statements with the corresponding equations given in the appropriate
references and (ii) spot check intermediate and final calculation results using hand calculations,
spreadsheets, and third-party mathematics packages. In some cases, hand derivations were
used to verify some of the expressions coded into a module. For example, this approach was
used to verify the derivatives required for the Jacobian used in Newton’s method in the module
TWCFail_v2.1.f90.

Therefore, not all of the functionality was tested in each module. Numerical verification of a
module was performed using either external FORTRAN programs as drivers or dynamic linked
libraries (DLLs) driven by GoldSim® (GoldSim Technology Group LLC, 2010). For testing
purposes, some FORTRAN modules were modified to generate an output file to print
intermediate parameter values for verification of calculation results and execution sequence.

Verification of a module’s numerical output was performed using hand calculations, Microsoft®
Excel® (Microsoft Corporation, 2007) spreadsheets, or Mathematica™ (Wolfram Research
Inc., 2008).

B–2

Figure B–1. xLPR Time Loop Flow Chart (Klasky, et al., 2010)

Table B–1. xLPR Modules

Module Name Module Function Description

crack_init_v2.1 Performs primary water stress corrosion cracking (PWSCC) crack initiation.

grower_v2.1 Calculates the PWSCC crack growth rate.

Coalescence_v2.2 Combines the cracks that meet the coalesce criterion based on Section XI, Article IWA-3000 of the ASME
Boiler and Pressure Vessel code.*

kSurf_v1.1 Calculates the surface crack stress intensity, K, for a given crack size.

kTWC_v1.1 Calculates the K for a through-wall crack. Routine uses linear interpolation from tables of influence
functions.

SCFail_v2.1 Calculates the maximum bending moment for a surface crack under pressure and axial load.

TWCFail_v2.1 Calculates the critical crack size (leading to pipe failure) given a bending moment.

COD_v2.1 Calculates the crack opening displacement for a given crack size in a pipe under prescribed axial and
bending loads.

ISI_v2.1 Calculates the probability of not detecting a crack.

*ASME. “Boiler and Pressure Vessel Code.” Article IWA–3000, Section XI. Standard Examination Evaluation. New York City, New York: The
American Society of Mechanical Engineers. 2007.

B1.1.3 Testing Platforms

The verification testing was performed on personal computers running either the Microsoft
Windows® 7 or Windows XP operating system. The Lahey/Fujitsu FORTRAN 95 (Lahey
Computer Systems, 2004) compiler was used for compiling source code, building executables
(e.g., COD_V2.1 in Table B–1), and building DLLs.

B–3

B2 xLPR MODULE VERIFICATION TESTING

This section details the verification testing for each of the xLPR modules that are listed in
Table B–1. In the sections that follow, individual tables list each module’s input and output
variables, references used for FORTRAN code verification, and results of the
verification testing.

B2.1 Verification of Crack Initiation, Growth, and Coalescence Modules

The software modules that were tested are listed in Table B–2. Input values and calculation
results from each module were checked against reference documents. This checking was
performed on a limited basis. The DLLs were modified to write input information and
intermediate calculation results to output files. The results from the calculations and the input
information were compared to the source documentation. The references used in this testing
for each module are also shown in Table B–2.

B2.1.1 Crack Initiation

The crack initiation module, crack_init_v2.1.f90, contains three separate internal models—two
labeled as direct models and one identified as a Weibull model. Each model was tested, and
observations from this testing are listed in Table B–3. For each model, the equations in the
code were compared to the equations in Harrington, et al. (2011) and the calculation results for
the module were compared to spreadsheet-calculated values. Each observation is classified in
terms of its effect on the documentation or the code.

Table B–2. xLPR Modules Included in Verification

Module Dynamic Link Library GoldSim Model File References

Crack Initiation,
Version 2.1

crack_init_v2.1.dllx crack_init_test_cases_v2.1.gsm Harrington, et al.,
2011*

Crack Growth,
Version 2.1

grower_DLL_v2.1.dllx grower_v2.1_GS_file.gsm Harrington, et al.,
2011*
Ahluwalia, 2007†

Crack Coalescence,
Version 2.2

Coalescense_DLLx_v2.2.dllx GS_Framework_Coalescence_v2.2.gsm Harrington, et al.,
2011*

*Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D.J. Shim, and G. White. “Models and Inputs
Selected for Use in the xLPR Pilot Study.” Product Identifier 1022528. Palo Alto, California: Electric Power Research Institute. 2011.
†Ahluwalia, K. “Materials Reliability Program: Mitigation of PWSCC in Nickel-Base Alloys by Optimizing Hydrogen in the Primary Water
(MRP-213).” Product Identifier 1015288. Palo Alto, California: Electric Power Research Institute. 2007.

B–4

Table B–3. Crack Initiation Module Test Results
Model Observations Classification

Direct Model 1 None None
Direct Model 2 There is a discrepancy between Eq. 3.32 and Figure 3.31 in Harrington, et al.

(2011)* with regard to the QoverR term. The term is either + or – QoverR.
Possible code error
Inconsistency in
documentation

The operator in the statement “if [(Stress/SigYS-z) eq. 0.0] then” should be .le. Minor code error
Some round-off error in the calculation of “D” propagates to initiation time.
Harrington, et al. (2011, Eq. 3.30) shows 2/3, but the code uses a value
of 0.66.

Minor code error

Weibull Model None None
Overall Parameters in [Harrington, et al. (2011, Eq. 3.26, Direct Model 1; Eq. 3.32,

Direct Model 2; and Eq. 3.34, (Weibull Model)] do not match parameters in
Harrington, et al. (2011, Table 3.14), so it is not clear where the equations are
accurately implemented in the code. For example, the terms “(Tempr + 273)”
in the code need to be clarified for consistency with Harrington, et al. (2011).
In addition, similar calculations in the crack growth module use 273.15 instead
of 273. The code and documentation should be reviewed for consistency.

Minor document
clarification
Minor code inconsistency

For Tempr, Harrington, et al. (2011, Table 3.14) specifies values greater than
30 °C but the code checks for values less than 30 °C. It should instead check
for values less than or equal to 30 °C.

Minor code error

For the same temperature and stress input data, the three models produce
significantly different results. Therefore, the parameter values listed in
Harrington, et al. (2011, Table 3.14) may need to be reviewed.

Possible model
development review
needed

*Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D.J. Shim, and G. White. “Models and Inputs
Selected for Use in the xLPR Pilot Study.” Product Identifier 1022528. Palo Alto, California: Electric Power Research Institute. 2011.

None of the observations listed in Table B–3 are expected to significantly change the module
calculation results. Therefore, minor code errors and minor document clarifications are listed in
this table. However, because each model produces significantly different results for the same
input stress and temperature values, the appropriateness of model parameters and validity of
these different models should be reviewed as discussed in Harrington, et al. (2011).

B2.1.2 Crack Growth

For the crack growth module, grower_DLL_v2.1.f90, the equations in the code were compared
to the equations in Harrington, et al. (2011) and intermediate and final calculation results were
compared to spreadsheet-calculated values. The equations in the code were compared to
Harrington, et al. (2011, Eqs. 3.20 through 3.24). Additionally, Ahluwalia (2007) was used to
clarify the implementation of Harrington, et al. (2011, Eq. 3.21). From this comparison, one
error is identified in the code. Ahluwalia (2007) shows a sample calculation pertaining to
Harrington, et al. (2011, Eq. 3.21) that uses the base 10 logarithm (i.e., log10) versus the natural
logarithm (i.e., ln). The code, however, incorrectly implements Harrington, et al. (2011,
Eq. 3.21) by using the natural logarithm in the calculation. This calculation is for the difference
in electrochemical potential between the Ni/NiO transition and the electrochemical potential at
the current concentration of hydrogen (i.e., ∆ECPNi/NiO). This error changes the crack growth
rate significantly and therefore is classified as a major code error.

B2.1.3 Crack Coalescence

For the crack coalescence module, Coalescence_DLLx_v2.2.f90, the software control logic was
compared to the descriptions in Harrington, et al. (2011) for two test cases. One test case
involved the coalescence of two surface cracks, and the other involved the coalescence of
surface and through-wall cracks (TWC). In addition, the resulting (i.e., coalesced) crack location
and length were compared to spreadsheet-calculated values. For both test cases, the logic for
coalescing cracks agreed with descriptions in Harrington, et al. (2011) and the resulting values
for crack location and length agreed with spreadsheet-calculated values and the descriptions in
Harrington, et al. (2011).

B–5

B2.2 Verification of the Surface and Through-Wall-Crack Stress

Intensity Factor, Surface Crack Maximum Bending Moment, and
Through-Wall-Crack Critical Crack Size Modules

The xLPR modules that were validated are listed in Table B–4. The source code for each
module was compared with reference documents to verify consistency. Line-by-line code
inspection was performed for all the subroutines in the module. In most cases, mathematical
derivations were performed by hand to verify that the corresponding FORTRAN statements
agreed with the theory given in the appropriate references. Standalone programs for testing
each module were obtained from the Microsoft SharePoint® configuration management (CM)
directories. In all cases, the developer previously hardwired input values into the code.
Calculations were verified by using FORTRAN write statements to generate intermediate
calculations to a “debug” output file. This allowed validation of calculation sequence and
calculation correctness. The output was also compared to documented results provided in an
xLPR Model Document and Checking Desktop Guide provided for each module. These
documents were obtained from the SharePoint CM directories.

B2.2.1 Stress Intensity Factor for a Surface Crack

This module is part of the overall Crack Growth module. In particular, kSurf_v1.1.f90 calculates
the stress intensity factor for surface cracks. Within this module are calls to other subroutines,
which calculate the influence functions for a number of (c/a), (r/t), and (a/t) ratios, where c is the
crack half length, a is the crack depth, r is the pipe inner radius, and t is the wall thickness. On
the basis of the influence functions, the surface crack tip stress intensity at the deepest point,
surfk90, and the surface crack tip stress intensity at a surface point, surfk0, are calculated.

Table B–5 lists the inputs and outputs for kSurf_v1.1.f90.

Table B–4. xLPR Modules Included in Verification

Module Calculation Subroutine References

Stress intensity factor,
surface crack

kSurf_v1.1.f90 Excel® file “Surface Crack Anderson.xlsx”*
WRC Bulletin 471 (Anderson, et al., 2002)†
ConceptualDescription-XLPR-DSK-004R0_SIAM_kSurf_v1.1.docx

Stress intensity factor,
through-wall crack

kTWC_v1.1.f90 Excel file “TWC Anderson.xlsm”*
ConceptualDescription-XLPR-DSK-004R0_SIAM_kTWC_v1.1.docx

Bending moment for a
surface crack

SCFail_v2.1.f90 Rahman (1998)‡
NUREG/CR4853 (Burst, 1987)§
ConceptualDescription-XLPR-DSK-004R0_SIAM_SCFail_v2.1.docx

Critical crack size
(through-wall crack)
leading to pipe failure

TWCFail_v2.1.f90 Rahman (1998) ‡
Gilles and Brust (1991)<
Brust and Gilles (1994)¶
NUREG/CR4853 (Brust, 1987)§
ConceptualDescription-XLPR-DSK-004R0_SIAM_TWCFail_v2.1.docx

*The listed Excel files were obtained from the SharePoint® site.
†Anderson, L., G. Thorwald, D.J. Revelle, D.A. Osage, J.L. Janelle, and M.E. Fuhry. “Development of Stress Intensity Factor Solutions for Surface
and Embedded Cracks in API 579.” WRC Bulletin 471. Shaker Heights, Ohio: Welding Research Council. 2002.
‡Rahman, S. “Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part II: Idealized Cracks and Closed-Form Equations.”
Engineering Fracture Mechanics. Vol. 61. pp. 213–230. 1998.
§Brust, F.W. NUREG/CR–4853, “Approximate Methods for Fracture Analysis Through-Wall Cracked Pipes.” Washington, DC: NRC.
pp. 213. 1987.
║Gilles P. and F.W. Brust. “Approximate Fracture Methods for Pipes—Part I: Theory.” Nuclear Engineering and Design. Vol. 127.
pp. 117. 1991.
¶Brust, F.W. and P. Gilles. “Approximate Methods for Fracture Analysis of Tubular Members Subjected to Combined Tensile and Bending Loads.”
Journal of Offshore Mechanics and Arctic Engineering. Vol. 116. pp. 221–227. 1994.

B–6

Table B–5. Inputs and Outputs for Stress Intensity Module: kSurf_v1.1.f90

Subroutine Inputs Outputs

kSurf_v1.1.f90

Pipe inner radius, Ri Surfk90, surface crack tip stress intensity at deepest
point

Surfk0, surface crack tip stress intensity at surface
point

Crack half-length, c
Crack depth, a
Wall thickness, t
Membrane stress, sig0
Components of through-thickness stress, sig1–
sig4
Bending stress, sig5

The subroutine, calcK (called by kSurf), determines the surface crack stress intensity factor, K,
for a given crack size. Specifically, surfk90 is the crack tip stress intensity at the deepest point
and surfk0 is the crack tip stress intensity at a surface point.

The calcK subroutine calls a number of other subroutines to calculate the appropriate influence
functions based upon the (c/a), (r/t), and (a/t) ratios. For an (a/c) ratio greater than 0.2 calcK
calls the subroutine calcG. For an (a/t) ratio less than 0.2, calcK calls the subroutines calcG
and calcGaovert0. Specifically, where (a/t) is less than 0.2, calcK calls subroutine calcG for an
(a/t) equal to 0.2 and calls the subroutine calcGaovert0 for an (a/t) equal to 0. Subsequently,
linear interpolation (subroutine lininterp) is performed using the solutions at (a/t) equal to 0 and
(a/t) equal to 0.2 to determine the influence functions for the actual (a/t) ratio between 0 and 0.2.

For a specified (a/t) ratio, subroutine calcG calculates the influence functions for different (c/a)
and (r/t) ratios. The FORTRAN code for calcG is straightforward and consists of a series of
FORTRAN expressions used to calculate each influence function depending on the specific
(c/a) and (r/t) ratio. Each of these expressions was verified line-by-line by comparing with the
influence function coefficients given in the Excel file Surface Crack Anderson.xlsx (obtained
from the SharePoint CM site) with those from the Influence Function Equations and Influence
Coefficients given in Anderson, et al. (2002). The coefficients in the code matched those in
the references.

The subroutine calcG determines influence functions for values of (c/a) between 1 and 32. If
the crack’s (c/a) ratio is larger than 32, then calcG calls the subroutine calcGinfinity, which
calculates the influence function for a given (r/t) and (a/t) ratio. All of the coding in this module
was compared with the corresponding expressions given in Anderson, et al. (2002), and the
code was verified to match the expressions.

A standalone version of kSurf_v1.1.f90 was obtained from the SharePoint CM site and used for
the numerical tests. The test procedure utilized FORTRAN write statements placed in
subroutines calcG, calcGaovert0, and calcGinfinity. All of the output was written to a debug file.
The output to this file allowed the calculation sequence to be verified for different (c/a), (r/t), and
(a/t) ratios; the correct passing of arguments; and specific values of the influence functions. The
subroutine lininterp is the same as that called in the module kTWC_v1.1.f90 and will be
discussed in that section.

The numerical output values of selected FORTRAN expressions were evaluated using simple
hand calculations by substituting the numerical value of each variable into the FORTRAN
statement and verifying the result that was printed in the debug file. All numerical hand
calculations agreed with those printed in the debug file.

For the calculations that were spot checked, all of the calculations agreed with the
expected results as documented in the check file obtained from the SharePoint CM site:

B–7

ConceptualDescription-XLPR-DSK-004R0_SIAM_kSurf_v1.1.docx (Williams and Klasky,
2010a). This verification against the check file was done to confirm the code that was verified,
matched the documented check file results.

B2.2.2 Stress Intensity Factor for a Through-Wall Crack

This subroutine is part of the overall Crack Growth module. The module kTWC_v1.1.f90
calculates the stress intensity factor for a TWC by using linear interpolation from tables of
influence functions.

Table B–6 lists the inputs and outputs for kTWC_v1.1.f90.

The main routine kTWC calls subroutine calcTWCK, which is used for calculating the stress
intensity factor, K, for a TWC using linear interpolation from tables of influence functions.
Subroutine calcTWCK calls the subroutine calcGTWC to calculate the necessary coefficients
used in the influence functions for a TWC. In specific cases, this subroutine utilizes the
subroutine lininterp, which performs simple linear interpolation.

Table B–6. Inputs and Outputs for Stress Intensity Module: kTWC_v1.1.f90
Subroutine Inputs Outputs

kTWC_v1.1.f90 Pipe inner radius, Ri TWCK, through-wall crack tip stress intensity
Crack half-length, c
Pipe thickness, thick
Total axial stress, sig0
ID WRS from load module, sigo_wrs
Local bending stress at the crack, sig5

The purpose of these routines is to populate an array with the influence functions. The array
contains data for specific (Ri/thick) ratios. For a (Ri/thick) ratio other than that directly having
available data, simple linear interpolation is used to calculate influence function values for the
given (Ri/thick) ratio.

Subroutine calcGTWC basically uses data tables of influence functions to populate the
necessary arrays, which are used to calculate the influence function coefficients g0twc, g1twc,
and g5twc and are the output from calcGTWC. The routine calcTWCK uses the output of
calcGTWC to calculate the TWC tip stress intensity, TWCK.

Because the basic function of the routines is to perform a “look up” of data from tables, the
source code of all of the routines was checked by using line-by-line inspection. The verification
of the coding for the linear interpolation algorithm was compared to numerical algorithms
[e.g., those given in Press, et al. (1992).] The algorithm in the software is similar to other
algorithms involving a look up of data.

The influence function data were verified by comparing the data statements in calcGTWC with
the data given in the Excel file “TWC Anderson.xlsm,” which was obtained from the SharePoint
CM site. All of the data were verified to be consistent with “TWC Anderson.xlsm.”

A standalone version of kTWC_v1.1.f90 was obtained from the SharePoint CM site and used for
the numerical tests. The test procedure utilized FORTRAN write statements placed primarily in
calcGTWC and lininterp. These write statements were used to output the values of specific
variables. All of the output was written to a debug file, which allowed the calculation sequence
to be verified, as well as the passing of arguments. The FORTRAN write statements were
placed at specific locations to print out components of the array a(…,…,…,…,) to verify that the

B–8

correct data were being copied from the declared FORTRAN data statement. The passing of
data and the calculation sequence were both verified to be correct. In addition, a value of
(Ri/thick), variable name rovert in the code, was chosen such that the routine lininterp was used.
The routine lininterp is a straightforward implementation of linear interpolation and was verified
to be calculating the interpolated value correctly.

For the calculations that were spot checked, all of the calculations printed in the debug file
agreed with the expected results for the stress intensity factor documented in the check file
obtained from the SharePoint CM site: ConceptualDescription-XLPR-DSK-
004R0_SIAM_kTWC_v1.1.docx (Williams and Klasky, 2010b). This verification against the
check file was done to confirm that the code matched the documented checkfile results.

B2.2.3 Maximum Bending Moment for a Surface Crack

The module SCFail_v2.1.f90 calculates the maximum bending moment for a surface crack
subject to pressure and axial loads.

Table B–7 lists the inputs and outputs for SCFail_v2.1.f90.

The main routine SC_Fail calls two other subroutines. The subroutine BM_CD_NSC
determines the maximum moment for a constant depth surface crack based on Net Section
Collapse (NSC). This subroutine considers two cases: (i) the entire crack in the tension zone
and (ii) part of the crack in the compression zone. For case (ii), there are checks to determine
whether or not there is crack closure. As given in Rahman (1998), because the crack has a
constant depth, closed-form solutions are available to calculate the stress-inversion angle, β,
and the NSC moment. There are no calls to other functions within this subroutine.

The subroutine BM_SESC_NSC determines the maximum moment for a semi-elliptical surface
crack based on NSC. This subroutine utilizes the solutions given in Rahman (1998). This
subroutine also considers two cases: (i) the entire crack in the tension zone and (ii) part of the
crack in the compression zone. For case (ii), there are checks to determine whether or not
there is crack closure.

For case (i) where the entire crack is in the tension zone, Rahman (1998) provides closed-form
solutions for the stress-inversion angle, β, and the NSC moment. In support of these
calculations, calls are made to the functions FN_GAMMA and FN_SUM1_SESC_NSC. The
implementation of the FN_GAMMA function was checked with NUREG/CR4853 (Burst, 1987)
and verified to be correct. The implementation of function FN_SUM1_SESC_NSC was checked
with Rahman (1998) and verified to be correct.

However, for case (ii), closed-form solutions do not exist. As given in Rahman (1998), the value
for β must be determined numerically. The function FN_FIND_BETA uses Newton’s Method to
find a solution for β. The majority of the terms in this function were checked directly with
Rahman (1998) and verified to be correct. A single derivative was verified by simple hand
derivation. The subroutine BM_SESC_NSC also uses the function FN_SUM2_SESC_NSC.
During code verification it was noted that the source code stated the code had been changed to
reflect an error given in Rahman (1998). This error correction was also documented in
Harrington, et al. (2011).

B–9

Table B–7. Inputs and Outputs for Net Section Collapse Module: SCFail_v2.1.f90
Subroutine Inputs Outputs

SCFail_v2.1.f90 Pipe outer radius, R_o BM_Ratio, bending moment ratio
Crack depth, depth
Pipe wall thickness, thick
Half-crack length, theta
Pipe yield stress, sigy
Pipe ultimate stress, sigu
Applied bending moment, BM
Pipe internal pressure, pressure
Applied axial force, F_ax
SC analysis method:
=0, constant depth surface crack
=1, semi-elliptical surface crack

A standalone version of SCFail_v2.1.f90 was obtained from the SharePoint CM site and used
for the numerical tests. The test procedure utilized FORTRAN write statements placed
throughout all of the subroutines and functions used in SCFail_v2.1. These write statements
were used to output the values of specific variables. All of the output was written to a debug file,
allowing the calculation sequence and the passing of arguments to be verified. The passing of
data and the calculation sequence were both verified to be correct. The values of selected
FORTRAN expressions were evaluated using hand calculations by substituting the numerical
value of each variable and verifying the result. For the functions FN_SUM1_SESC_NSC,
FN_SUM2_SESC_NSC, and FN_FIND_BETA, by examining the debug file, the numerical
iterations were verified to converge within the specified tolerance.

For the calculations that were spot checked, all of the calculations printed in the debug file
agreed with the expected results for the maximum bending moment documented in the check
file obtained from the SharePoint CM site: ConceptualDescription-XLPR-DSK-
004R0_SIAM_SCFail_v2.1.docx (Williams, 2010a). This verification against the checkfile was
done to confirm that the code matched the documented checkfile results.

B2.2.4 Critical Crack Size for a Through-Wall Crack

The module TWCFail_v2.1.f90 calculates the critical crack size leading to pipe failure for a
specified bending moment.

Table B–8 lists the inputs and outputs for TWCFail_v2.1.f90.

The main routine TWC_fail determines whether a TWC will fail under an applied load. The
TWC_fail routine calls two subroutines: THETA_CD_NSC and ENG2_mp.

B–10

Table B–8. Inputs and Outputs for Critical Crack Size Module: TWCFail_v2.1.f90

Subroutine Inputs Outputs

TWCFail_v2.1.f90 Pipe outer radius, R_o Theta_r, a
measure of
closeness to failure
in terms of critical
crack size

If_flag, failure and
failure mode
indication flag

Pipe wall thickness, thick

Half crack length, theta

Pipe yield stress, sigy

Pipe ultimate stress, sigu

Ramberg-Osgood coefficient, RO_alpha

Ramberg-Osgood reference stress, RO_sigo

Ramberg-Osgood reference strain, RO_epso

Ramberg-Osgood exponent, RO_n

Pipe material initiation J-resistance, Resist_Jic

Pipe material J-resistance coefficient, Resist_C

Pipe material initiation J-resistance exponent, Resist_m

Applied bending moment, BM

Pipe internal pressure, pressure

Applied axial force, F_ax

The subroutine THETA_CD_NSC determines the critical crack size for a constant depth TWC
using NSC assumptions. The equations used in this subroutine are based upon the theory
given in Rahman (1998) in which closed-form solutions are given for NSC. Rahman (1998,
Eqs. 12 and 13) was used to determine the critical crack length, 2θ. Based upon the form of
Rahman (1998, Eqs. 12 and 13), an iterative solution using Newton’s Method is necessary to
solve for θ. All of the FORTRAN expressions used in subroutine THETA_CD_NSC were
checked directly with Rahman (1998) and verified to be correct. A single derivative necessary
for Newton’s Method was verified by hand derivation. There are no calls to other subroutines or
functions within THETA_CD_NSC.

The subroutine ENG2_mp determines the equilibrium crack angle for a TWC for a pipe
subjected to internal pressure and bending moment. This calculation uses the LBB.ENG2
method (Brust and Gilles, 1994), which is based on elastic plastic fracture mechanics (EPFM).
ENG2_mp calls a number of other subroutines and functions in support of the EPFM
calculations. The calculations performed in the subroutine ENG2_mp are based upon a
J-estimation scheme technique. This method is detailed in Gilles and Brust (1991), Brust and
Gilles (1994), and NUREG/CR–4853 (Brust, 1987). All of the FORTRAN expressions used in
subroutine ENG2_mp were checked directly with these references and were verified to be
correct. However, note in the FORTRAN source code there are comments pointing out errors in
the referenced equations that have been corrected in the source code for the subroutines
ENG2_mp and CalcJ_Stuff, and in the functions FN_It2Ib2, FN_dIt2Ib2_dtheta, FN_
dIt2Ib2_dtheta2, FN_ItIb, FN_dItIb_dtheta, FN_d2ItIb_dtheta2, FN_dFtFb_dtheta, and
FN_d2FtFb_dtheta2. These corrections were verified based upon documentation given in
Harrington, et al. (2011).

A standalone version of TWCFail_v2.1.f90 was obtained from the SharePoint CM site and used
for the numerical tests. The test procedure utilized FORTRAN write statements placed
throughout all of the subroutines and functions used in TWCFail_v2.1. These write statements
were used to output the values of specific variables. All of the output was written to a debug file,
which allowed the calculation sequence and the passing of arguments to be verified. The
passing of data and the calculation sequence were also verified to be correct. The values of

B–11

selected FORTRAN expressions were evaluated by simple hand calculations by substituting the
numerical value of each variable and verifying the result.

• For the subroutine THETA_CD_NSC, for the calculations that were spot checked, all of the

calculations agreed with the expected results. The Newton Method iteration loop was
checked by printing intermediate values. The numerical iterations were verified to converge
within the specified tolerance and terminate correctly.

• Intermediate calculations were spot checked for the subroutine ENG2_mp, and all output

values agreed with the expected results. One Newton iteration loop was checked by
verifying convergence.

• ENG2_mp calls the subroutines CALC_STRESS and CalcJ_Stuff. The numerical

calculations for both subroutines were verified by examining the debug output file.

• For the functions FN_SUM1_SESC_NSC, FN_SUM2_SESC_NSC, and FN_FIND_BETA,
by examining the debug file, the iterations were verified to converge within the specified
tolerance by examining the debug file.

For the calculations that were spot checked, all of the calculations printed in the debug file
agreed with the expected results for the critical TWC size documented in the check file obtained
from the SharePoint CM site: ConceptualDescription-XLPR-DSK-
004R0_SIAM_TWCFail_v2.1.docx (Williams, 2010b). This verification against the checkfile was
done to confirm that the code matched the documented checkfile results.

B2.3 Verification of the Crack Opening Displacement Module

The software module that was part of this review is the crack opening displacement (COD),
COD_v2.1.f90, module. Input values and calculation results from the module were checked
against reference documents, as shown in Table B–9. A FORTRAN driver program
(checkCODdriver.f90 and checkCODdriver.exe) was written to call the appropriate subroutines
and carry out the various tests.

B2.3.1 Crack Opening Displacement

The use of the GE/Electric Power Research Institute (EPRI) method to calculate COD is
requested through a parameter, “method,” when calling the Calc_COD subroutine. At present,
the GE/EPRI method for calculating COD is available in Mattie, et al. (2010).

The expressions used in the COD_v2.1.f90 module appear consistent with those detailed in the
“xLPR Model Document and Checking Desktop Guide” (Olson, 2010). As described there, the
calculation implemented for the GE/EPRI method used the blended solution coded in NRCPIPE
Version 3.0 (Battelle, 1996).

Table B–10 lists the inputs and outputs for the COD_v2.1.f90 module.

Note Olson (2010) and Mattie (2010) state that there is a mistake in the implementation of the
solution in NRCPIPE (Battelle, 1996) for the blended GE/EPRI COD solution. Olson (2010)
indicates that COD_v2.1.f90 uses a slightly modified form of the equations that does not include
the referenced mistake. The COD_v2.1.f90 module uses this modified form of the equations.

B–12

As part of the spot-checking approach, several subroutines, functions, and individual
expressions from the COD_v2.1.f90 module were tested to ensure that appropriate output
was returned. For example, using the checkCODdriver.exe program, the following subroutines
were checked: (i) Calc_COD, (ii) Blended_COD, and (iii) GetNeigborIndices. Verification of
these subroutines involved running a number of test cases, each with different input values.

Table B–9. xLPR Module Included in Verification

Module Calculation Subroutine References
Crack opening displacement COD_v2.1.f90 Olson (2010),* Mattie (2010)†
*Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Battelle. 2010.
†Mattie, P.D. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.1.DLL.” Albuquerque, New Mexico: Sandia National
Laboratories. 2010.

Table B–10. Inputs and Outputs for Crack Opening Displacement Module: COD_v2.1.f90

Inputs Outputs

Diameter = R_o: pipe outer radius

Crack opening
displacement =

COD_OD: crack opening on
the outside of the pipe at the
centerline of the crack (-1.0

if the if_flag < 0)

Wall thickness = thick: pipe wall thickness

Crack length = theta: half-crack length (radians)

Operating Loads = pressure: pipe internal pressure

Transient Loads = BM: applied bending moment

COD_ID: crack opening on
the inside of the pipe at the
centerline of the crack (-1.0

if the if_flag < 0)

F_ax: applied axial force (excluding

pressure effect)
Material Flow Stress

(Stress Strain) =
sigy: pipe yield stress

sigu: pipe ultimate stress

RO_alpha, RO_sigo, RO_epso, RO_n:
Ramberg-Osgood stress-strain

parameters

Other = if_flag: failure indication flag

sig0_wrs, sig1_wrs, sig2_wrs,
sig3_wrs: Residual stress polynomial

terms 0 through 3

Other =
Resist_Jic, Resist_C, Resist_m: J-R

curve constants (failure criteria)

method: COD analysis method selector

Several input values for parameters were imported from a text file [testinputdata.txt] using the
FORTRAN driver program. Several parameter calculations contained in some of the
subroutines were also verified by insertion of intermediate dumps of data to the test logging file
[parametervaluedump.log]. Additionally, a Mathematica™ notebook was used to compute
independent parameter values for several test cases [see check_COD_v2.1.nb]. The test
driver, calculation, and logging files (listed in Table B–11) are included together in the archive
file [codchecks.zip].

The subroutine Calc_COD is called using parameter values from the six test cases described in
the xLPR Model Document and Checking Desktop Guide (Mattie, 2010). These cases were
selected because the values can be readily compared to those previously tested and the input
parameters cover a range of representative data. The parameter input values for the test cases
are imported into the FORTRAN driver program (checkCODdriver.exe) from a text file
(testinputdata.txt). All test cases are called using method 0 for the GE/EPRI calculation. The
input values used for test cases 1 to 5 are given in Table B–12.

B–13

Table B–11. Files Contained in the Archive codchecks.zip
File Name Notes

checkCODdriver.f90 This is the test driver program, which calls several subroutines from the
COD_v2.1.90 module.

checkCODdriver.exe The check driver executable program. The executable file was built linking both
the checkCODdriver.f90 and COD_v2.1_mod4checks.f90 object code.

testinputdata.txt This contains the input values for the test cases. When checkCODdriver.exe is
executed, this input file should be used.

COD_v2.1_mod4checks.f90 This is the original COD_v2.1.90 source code, which has had additional
debugging statements added to access intermediate parameter values.

parametervaluedump.log This log file is used to store and view parameter values from the additional
debugging statements that were added to the original COD_v2.1.f90 source code.

check_COD_v2.1.nb This is a Mathematica™ notebook that contains several additional calculations
and checks for the subroutines and parameters.

check_COD_v2.1.pdf This is a pdf format file containing the contents of a Mathematica™ notebook file
(for user convenience).

Table B–12. Parameter Input Values for Test Cases 1 to 5 as Presented in Olson (2010)*

Parameter, Units Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5
R_o, in 2.25 18 2.25 6.375 2.1
thick, in 0.214285714 1.714285714 0.214285714 0.607142857 0.2
theta, rad 0.5013974 1.0027955 1.002795267 1.002795459 1.0547
pressure, psi 933.3333333 933.3333333 807.1428571 807.1428571 0
BM, in-lb 130597 22176061.93 44860.27408 930047.6436 325242.222
F_ax, lb 0 0 0 0 0

sigy, psi 49983.25567 49983.25567 35789.61475 35789.61475 50000
sigu, psi 74974.8835 74974.8835 47013.58238 47013.58238 110000
RO_alpha, - 6.349384579 6.349384579 11 11 1
RO_sigo, psi 49983.25567 49983.25567 35789.61475 35789.61475 50000
RO_epso, - 0.001785116 0.001785116 0.001350552 0.001350552 0.001666667
RO_n, - 6.316480712 6.316480712 4.754679198 4.754679198 2
Resist_Jic, lb/in 0 0 0 0 14515.93603
Resist_C, - 0 0 0 0 105374.9917
Resist_m, - 0 0 0 0 1.03491313
sig0_wrs, psi 0 0 0 0 0
sig1_wrs, psi 0 0 0 0 0
sig2_wrs, psi 0 0 0 0 0
sig3_wrs, psi 0 0 0 0 0
*Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Batelle. 2010.

The parameter input values for test case 6 are given in Table B–13. Note that for Test Case 6,
Olson (2010) gives the input vales in SI units.

B–14

Table B–13. Parameter Input Values for Test Case 6 as Presented in Olson (2010)*
Parameter, Units Test Case 6

R_o, mm 190.5
thick, mm 40.132
theta, rad 1.8

pressure, MPa 15.52989
BM, N-mm 206879000
F_ax, N 21570
sigy, MPa 124.322
sigu, MPa 368.641
alpha, - 4.47291
sigo, MPa 124.322
epso, - 0.000701989
n, - 3.93325
J_ic, N/mm 391.884
C 225.528
m, - 0.622615
sig0_wrs, MPa 286.06
sig1_wrs, MPa −1080.1
sig2_wrs, MPa −1.06342
sig3_wrs, MPa 1017.37
COD, mm 334.151111
*Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Batelle. 2010.

Table B–14 provides the expected results for the test case calculations as reported in
Olson (2010).

Note that the listed results from Mattie (2010) are for the COD and are collected from several
source programs. The results listed as “Program” are from the COD_v2.1 module as tested by
Olson (2010), the results from Excel are from an independent spreadsheet (Mattie, 2010), and
the results listed as “NRCPIPE” are from the NRCPIPE User’s Guide (Battelle, 1996).

Table B–14. Expected Results from Olson (2010)*
Parameter,

Units Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Program 0.0655901 in 0.1938032 in 0.0861614 in 0.176766 in 0.5620454 in 334.151111 mm

Excel® 0.065591 in 0.1938032 in 0.0861613 in 0.176766 in 0.5620452 in —

NRCPIPE na na na na 0.5618 in —

*Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Batelle. 2010.

Table B–15 shows the result values that were calculated for the six test cases.

The results for all of the test cases match those previously reported from the COD_v2.1 module
(Mattie, 2010) by rounding the final digits. These results agree well with the results reported
from Excel (Mattie, 2010) and with the values reported from NRCPIPE (Battelle, 1996).

For the subroutine Blended_COD, a number of internal parameters were checked. The variable
h2_tdata is equated to the results from a call to the GetBinlinearInterpolation function. The
inputs to this function are the parameters TOP_h2t10, en_h2t10, h2_t10data, aob, and RO_n.
The values for TOP_h2t10, en_h2t10, and h2_t10data are defined in the COD module as
arrays, and their values are constant. The values for aob and RO_n are varied for each case
tested. RO_n was an input parameter for the Calc_COD subroutine, and aob is calculated
internally. The values used for the six input test cases were the same as those used for Test 1
of subroutine Calc_COD.

B–15

To determine the expected results for the GetBilinearInterpolation function (h2_tdata), a
separate Mathematica™ notebook was written to calculate the appropriate interpolated values
(see check_COD_v2.1.nb for more information). Values of aob, calculated in the Calc_COD
module for the test cases 1 to 6, were extracted from test case runs by exporting values to an
external text file. Table B–16 gives the input values for aob and RO_n used in the test cases.

The expected results shown in Table B–17 are from calculations using Mathematica™ and
documented in the notebook (check_COD_v2.1.nb).

Table B–18 gives the results obtained from the checkCODdriver program for the six test cases.

As shown, the test results for all cases agree with the expected results considering possible
round-off error.

The crack opening displacement due to the tensile axial force is defined by the parameter
delta_pt and is calculated in subroutine Blended_COD. The expression used to calculate
delta_pt is detailed in Mattie (2010). The expression for delta_pt coded in the subroutine
Blended_COD is the second term in the expression defined in Mattie (2010, Eq. 3). There, the
author notes that there was a mistake in implementing the solution in NRCPIPE (Battelle, 1996).
Mattie (2010) refers to GE/EPRI NP-5596 (EPRI, 1988) and indicates that the π in the Ptot/P0
term does not belong there. This adjustment to the expression is further noted in the
COD_v2.1.f90 source code.

Table B–15. Calculated Results for All 6 Test Cases

Parameter, Units Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

check
CODdriver.exe
Program results

0.06559006 in 0.19380319 in 0.08616136 in 0.1767660 in 0.56204536 in 334.1511111 mm

Table B–16. Input Values for aob and RO_n

 Parameter
Case # aob RO_n

1 0.159599749326848 6.316480711999990
2 0.319199721470617 6.316480711999990
3 0.319199647304414 4.754679197999990
4 0.319199708419912 4.754679197999990
5 0.335721436958044 2.000000000000000
6 0.572957795130823 3.93325

Table B–17. Output Values for aob and RO_n Using Mathematica™

Case aob RO_n Interpolated Results
1 0.159599749326848 6.31648071199999 4.640597114534663
2 0.319199721470617 6.31648071199999 2.5303812910481627
3 0.319199647304414 4.75467919799999 3.103644802818521
4 0.319199708419912 4.75467919799999 3.1036443056682113
5 0.335721436958044 2. 4.387134900018311
6 0.572957795130823 3.93325 2.04444175

Table B–18. Output Values for aob and RO_n

Case #
Parameter Test Result

h2_tdata(2,1) aob RO_n
1 0.159599749326848 6.316480711999990 4.640597115
2 0.319199721470617 6.316480711999990 2.530381291
3 0.319199647304414 4.754679197999990 3.103644803
4 0.319199708419912 4.754679197999990 3.103644306
5 0.335721436958044 2.000000000000000 4.3871349
6 0.572957795130823 3.933250000000000 2.04444175

B–16

For the verification testing, the values for the parameter delta_pt were calculated independently
in a separate Mathematica™ notebook (see check_COD_v2.1.nb), based upon the expressions
presented in the xLPR Model Documentation and Checking Desktop Guide (Mattie, 2010) and
the COD_v2.1.f90 source code. The values for delta_pt were calculated for the six test cases
considered in the test of subroutine Calc_COD. The test cases and expected results (based
upon parameter value dumps from the COD_v2.1 module) are given in Table B–19.

The results from the Mathematica™ notebook, as shown in Table B–20, agree with those from
intermediate values extracted from the COD_v2.1 module. Therefore, all tests pass to within
expected precision.

Table B–19. Expected Results for the Parameter delta_pt from COD_v2.1 Module
Case # delta_pt

1 1.000448727E-07
2 2.47842975E-05
3 1.412412089E-04
4 4.00183894E-04
5 0
6 24.630017

Table B–20. Comparison of Results for Parameter delta_pt

Case # COD_V2.1 Module Output Mathematica Output
1 1.000448727E-07 1.0004487271486431E-07
2 2.47842975E-05 2.4784297594405805E-05
3 1.412412089E-04 1.4124120894351E-04
4 4.00183894E-04 4.001838940377014E-04
5 0 0
6 24.630017 24.63001707844345

The parameter delta_pbpt is calculated in subroutine Blended_COD. For the test, the values for
the parameter delta_pbpt were calculated independently in a separate Mathematica™ notebook
(see check_COD_v2.1.nb), based upon the expressions presented in the xLPR Model
Documentation and Checking Desktop Guide (Mattie, 2010) and the COD_v2.1.f90 source
code. The values for delta_pbpt were calculated for the six test cases considered in the test for
Subroutine Calc_COD. The test cases and expected results (based upon parameter value
dumps from the COD_v2.1 module) are given in Table B–21.

The results from the Mathematica™ notebook, given in Table B–22, agree with those from
intermediate values extracted from the COD_v2.1 module. Therefore, all tests pass to within
expected precision.

The function GetBilinearInterpolation is called from subroutine Blended_COD. In this test, the
subroutine GetBilinearInterpolation is called five times. The five tests are intended to verify that
for a given, simple set of input coordinates, the function will properly handle requests for indices
that lie outside of the range of values in the indices, i.e., exactly on the indices, having one
value on the indices with another value between indices, and having both values between
indices. The test indices (coordinates) used are given in Table B–23.

B–17

Table B–21. Expected Results for Parameter delta_pbpt from COD_v2.1 Module
Case # delta_pbpt

1 5.371345E-02
2 1.642915E-02
3 6.1857778977E-02
4 0.11280231759
5 0.430521175
6 —

Table B–22. Comparison of Results for Parameter delta_pbpt

Case # COD_v2.1 Module Output Mathematica Output
1 5.371345E-02 5.371345078046241E-02
2 1.642915E-02 1.6429150589244587E-02
3 6.1857778977E-02 1.85777897729749E-02
4 0.11280231759 0.11280231759279842
5 0.430521175 0.4305211754024092
6 — —

Table B–23. Test Indices

Parameter (Array) Indice Coordinate Values
testxlist 1, 2, 3
testylist 1, 2, 3, 4, 5

The third dimension (z) is a function of the testxlist and testylist values. For this test, the z
surface was defined as z(x,y) = x H y; therefore, the values given in Table B–24 were used for
the z surface.

The test case input values for the x and y coordinates, the assumed test indices, and the
expected results from the function GetBilinearInterpolation are given in Table B–25 (as
calculated in the Mathematica™ notebook check_COD_v2.1.nb).

The results for the five tests, as output from the checkCODdriver program (e.g., see
parametervaluedump.log, TESTR1) were in agreement with all expected results as shown in
Table B–26 (all tests passed).

The subroutine GetNeigborIndices is called from within Blended_COD. In this test, the
subroutine GetNeigborIndices is called four times. The four tests are intended to verify that for
a given one-dimensional array of values, the subroutine will properly handle requests for
neighbor indices for values that lie between two indices, for values that lie outside of the range
of the indices (both for values greater and less than the given range), and for a requested
number that is the same value as one of the indices. The input values and expected results are
given in Table B–27.

The results from the test, as obtained from the checkCODdriver.exe console output, are given in
Table B–28. The expected results were observed for all trials; therefore, all tests pass.

B2.4 Verification of the In-Service Inspection Module

This xLPR module, ISI_v2.1.f90, calculates the probability of not detecting a crack for various
crack depth to wall thickness ratios and returns a flag (0 = not detected, 1 = detected) that
indicates whether or not the crack was detected. The software module that was part of this
review is shown in Table B–29. Input values and calculation results from the module were
checked against a reference document. This checking was performed on a limited basis. The
DLLs were modified to write input information and intermediate calculation results to output files.

B–18

The results from the calculations and the input information were compared to the source
documentation. The reference used in this testing for this module is also shown in Table B–29.

Table B–24. Values Used for Z Surface

Array Elements

Parameter (Array, Dimension (3, 5)) X Coordinate Y Coordinates
testzsurface 1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15

Table B–25. Expected Results From GetBilinearInterpolation
Test Case x Coordinate Value (x#) y Coordinate value (y#) Expected Result

R1 0 0 1
R2 4 6 15
R3 2 3 6
R4 2.5 3 7.5
R5 2.5 3.5 8.75

Table B–26. Test Results From GetBilinearInterpolation
Test Case x Coordinate Value (x#) y Coordinate Value (y#) Test Result

R1 0 0 1
R2 4 6 15
R3 2 3 6
R4 2.5 3 7.5
R5 2.5 3.5 8.75

Table B–27. Expected Results of GetNeigborIndices Testing
Test Input Coordinate Value Expected Lower Value Returned Expected Greater Value Returned
3A 4.5 4 5
3B 11.0 10 10
3C 7.0 7 7
3D 0 1 1

Table B–28. Test Results of GetNeigborIndices

Test Input Coordinate Value Lower Value Returned From Test
Greater Value Returned From

Test
3A 4.5 4 5
3B 11.0 10 10
3C 7.0 7 7
3D 0 1 1

Table B–29. xLPR Module Included in Verification

Module Dynamic Link Library GoldSim Model File References
In-Service Inspection,
Version 2.1

ISI_DLL_v2.1.dllx ISI_v2.1_GS_Framework_Test_File.
gsm

Harrington, et al.
(2011)*

*Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D.J. Shim, and G. White. “Models and Inputs
Selected for Use in the xLPR Pilot Study.” Product Identifier 1022528. Palo Alto, California: Electric Power Research Institute. 2011.

Table B–30 shows the input and output for the in-service inspection module.

The software logic agreed with the descriptions in Harrington, et al. (2011), and results from the
software agreed with spreadsheet calculations. However, the following is recommended:

1. Harrington, et al. (2011) indicate that if a random sample is less than the calculated

probability of detection, then the crack is considered to have been detected. Revise
Harrington, et al. (2011) to indicate that if the calculated probability of nondetection is

B–19

less than or equal to a randomly sampled value from a uniform distribution, then the
crack is considered to have been detected.

2. Add error detection to the DLL. For example, if a crack depth to wall thickness ratio

greater than one is input, then the DLL can still produce a probability of nondetection
that appears valid when it is not valid. For example, at an invalid crack depth to wall
thickness ratio of 1.1 and parameters set to their mean values, the probability of
nondetection is 0.045. Table B–31 shows that this result is not much different than
results from valid ratios.

3. Harrington, et al. (2011) describe a probability of detection curve that is nearly flat and

this shape is reflected in the results shown in Table B–31. Clarify in Harrington, et al.
(2011) how this shape is valid over the range of crack depth to wall thickness ratios from
0.1 to 1.0 and with a nonzero probability of nondetection at a ratio of 1.0.

Table B–30. Input and Output for In-Service Inspection Module: ISI_v2.1.f90

ISI Module Input Description ISI Module Output Description
aot

(0 <aot<1)
Crack Depth to Wall Thickness Ratio Idetected Detection Flag

Beta1 β1 parameter in Equation 15 PND (i.e., 1-POD) Probability of
nondetection (PND)

Beta2 β2 parameter in Equation 15 time_end_time_begin DLL CPU clock time
Urnd

(0<urnd <1)
Uniform random number — —

Table B–31. In-Service Inspection Module Probability of Nondetection

Crack Depth to Wall Thickness Ratio Beta1 Beta2 Probability of Nondetection
0.1 2.7076 0.31 0.061
0.3 2.7076 0.31 0.057
0.4 2.7076 0.31 0.056
0.9 2.7076 0.31 0.048
1.0 2.7076 0.31 0.047

B3 CONCLUSIONS

This section summarizes the verification testing that was documented in Section B2. In
Section B3.1, for conciseness the summary is presented in tabular form. Section 3.2
summarizes recommendations for resolving possible coding issues found during
verification testing.

B3.1 Summary of Verification Testing

The xLPR modules that underwent verification testing are listed in Table B–1, Section 1.1.
Table B–32 summarizes the verification testing.

B–20

Table B–32. Summary of Verification Testing
Module Name Verification Summary

Coalescence_v2.2 Verified using spreadsheet calculations and comparison with Harrington, et al. (2011)*
crack_init_v2.1 Direct Model 1: No issues

Direct Model 2: Possible code error (see Table B–3), other minor code and
documentation inconsistencies

Weibull Model: No issues

grower_v2.1 Major coding error from Harrington, et al. (2011, Eq. 3.21)*
kSurf_v1.1 Equations spot checked with “Surface Crack Anderson.xlsx” and Anderson, et al. (2002)†

Verified by comparison of output with
ConceptualDescription-XLPR-DSK-004R0_SIAM_kSurf_v1.1.docx (Williams and
Klasky, 2010)‡

kTWC_v1.1 Influence function data spot checked with
“TWC Anderson.xlsm”

Verified by comparison of output with
ConceptualDescription-XLPR-DSK-004R0_SIAM_kTWC_v1.1.docx (Williams and Klasky,
2010)§

SCFail_v2.1 Equations spot checked with Rahman (1998), Brust (1987)¶, and Harrington, et al. (2011)*

Verified by comparison of output with
ConceptualDescription-XLPR-DSK-004R0_SIAM_SCFail_v2.1.docx (Williams, 2010)#

TWCFail_v2.1 Equations spot checked with Rahman (1998), Gilles and Brust (1991)**, Brust and Gilles
(1994)††, and Brust (1987)¶

Verified by comparison of output with
ConceptualDescription-XLPR-DSK-004R0_SIAM_TWCFail_v2.1.docx (Williams, 2010)‡‡

COD_v2.1 Equations spot checked with Olson (2010)§§ and Mattie, et al. (2010)<<

Verified using checkCODdriver.exe and Mathematica™ and comparison with Olson (2010)
§§ and Mattie (2010) ¶¶

ISI_v2.1 Verified using spreadsheet calculations and comparison with Harrington, et al. (2011)*
*Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D.J. Shim, and G. White. “Models and Inputs
Selected for Use in the xLPR Pilot Study.” Product Identifier 1022528. Palo Alto, California: Electric Power Research Institute. 2011.
†Anderson, L., G.. Thorwald, D.J. Revelle, D.A. Osage, J.L. Janelle, and M.E. Fuhry. “Development of Stress Intensity Factor Solutions for Surface
and Embedded Cracks in API 579.” WRC Bulletin 471. Shaker Heights, Ohio: Welding Research Council. 2002.
‡Williams, P. and H. Klasky. “ConceptualDescription-XLPR-DSK-004R0_SIAM_kSurf_v1.1.” Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010.
§Williams, P. and H. Klasky. “ConceptualDescription-XLPR-DSK-004R0_SIAM_kTWC_v1.1.” Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010.
Rahman, S. “Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part II: Idealized Cracks and Closed-Form Equations.”
Engineering Fracture Mechanics. Vol. 61. pp. 213–230. 1998.
¶Brust, F.W. NUREG/CR–4853, “Approximate Methods for Fracture Analysis Through-Wall Cracked Pipes.” Washington, DC: NRC.
pp. 213. 1987.
Williams, P. “ConceptualDescription-XLPR-DSK-004R0_SIAM_SCFail_v2.1.” Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010.
** Gilles, P. and F.W. Brust. “Approximate Fracture Methods for Pipes—Part I: Theory.’ Nuclear Engineering and Design. Vol. 127.
pp. 117. 1991.
††Brust, F.W. and P. Gilles. “Approximate Methods for Fracture Analysis of Tubular Members Subjected to Combined Tensile and Bending Loads.”
Journal of Offshore Mechanics and Arctic Engineering. Vol. 116. pp. 221–227. 1994.
‡‡Williams, P. “ConceptualDescription-XLPR-DSK-004R0_SIAM_TWCFail_v2.1.” Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010b.
§§ Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Battelle. 2010.
Mattie, P.D., C.J. Sallaberry, J.C. Helton, and D.A. Kalinch. “Development, Analysis, and Evaluation of a Commercial Software Framework for the
Study of Extremely Low Probability of Rupture (xLPR) Events at Nuclear Power Plants.” SAND2010-8480. Albuquerque, New Mexico: Sandia
National Laboratories. 2010.
¶¶Mattie, P.D. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.1.DLL.” Albuquerque, New Mexico: Sandia National
Laboratories. 2010.

B3.2 Issues and Recommendations Based on Verification Testing

The following list summarizes coding issues or documentation inconsistencies that arose during
verification testing. Possible recommendations to clarify these issues are also given.

1. Module crack_init_V2.1 (crack initiation), for the same temperature and stress input

data, comparison of Direct 1, Direct 2, and Weibull models produced significantly
different results. However, because each model produces significantly different results
for the same input stress and temperature values, the appropriateness of model

B–21

parameters and validity of these different models should be reviewed and discussed in
Harrington, et al. (2011). Therefore, the parameter values listed in Harrington, et al.
(2011, Table 3.14) may need to be reviewed.

2. Module grower_V2.1 (crack growth), Ahluwalia (2007) shows a sample calculation

pertaining to Equation 3.21 that uses the base 10 logarithm (i.e., log10) versus the
natural logarithm (i.e., ln). The code, however, incorrectly implements Harrington, et al.
(2011, Eq. 3.21) by using the natural logarithm in the calculation.

3. For the module ISI_v2.1 (inservice inspection), the software logic agreed with the

descriptions in Harrington, et al. (2011) and results from the software agreed with
spreadsheet calculations; however, the following is recommended:

a. Harrington, et al. (2011) indicate that if a random sample is less than the

calculated probability of detection, then the crack is considered to have been
detected. Revise Harrington, et al. (2011) to indicate that if the calculated
probability of nondetection is less than or equal to a randomly sampled value
from a uniform distribution, then the crack is considered to have been detected.

b. Add error detection to the DLL. For example, if a crack depth to wall thickness

ratio greater than one is input, then the DLL can still produce a probability of
nondetection that appears valid when it is not valid. Additional details were
provided in Section 2.4.

c. Harrington, et al. (2011) describe a probability of detection curve that is nearly

flat, and this shape is reflected in the results shown in Table B–31. Clarify in
Harrington, et al. (2011) how this shape is valid over the range of crack depth to
wall thickness ratios from 0.1 to 1.0 and with a nonzero probability of
nondetection at a ratio of 1.0.

B4 REFERENCES

Ahluwalia, K. “Materials Reliability Program: Mitigation of PWSCC in Nickel-Base Alloys by
Optimizing Hydrogen in the Primary Water (MRP-213).” Product Identifier 1015288. Palo Alto,
California: Electric Power Research Institute. 2007.

Anderson, L., G. Thorwald, D.J. Revelle, D.A. Osage, J.L. Janelle, and M.E. Fuhry.
“Development of Stress Intensity Factor Solutions for Surface and Embedded Cracks in
API 579.” WRC Bulletin 471. Shaker Heights, Ohio: Welding Research Council. 2002.

Battelle. “NRCPIPE User’s Guide (Windows Version 3.0).” Contract NRC–04–91–063.
Columbus, Ohio: Batelle. 1996.

Brust, F.W. NUREG/CR–4853, “Approximate Methods for Fracture Analysis Through-Wall
Cracked Pipes.” Washington, DC: NRC. pp. 2–13. 1987.

Brust, F.W. and P. Gilles. “Approximate Methods for Fracture Analysis of Tubular Members
Subjected to Combined Tensile and Bending Loads.” Journal of Offshore Mechanics and Arctic
Engineering. Vol. 116. pp. 221–227. 1994.

B–22

EPRI. “Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders.
NP-5596.” Palo Alto, California: EPRI. 1988.

Gilles, P. and F.W. Brust. “Approximate Fracture Methods for Pipes—Part I: Theory. Nuclear
Engineering and Design. Vol. 127. pp. 1–17. 1991.

GoldSim Technology Group LLC. “GoldSim® Version 10.5.” Issaquah, Washington: GoldSim
Technology Group LLC. 2010.

Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen,
P. Scott, D.J. Shim, and G. White. “Models and Inputs Selected for Use in the xLPR Pilot
Study.” Product Identifier 1022528. Palo Alto, California: EPRI. 2011.

Klasky, H.B., P.T. Williams, B.R. Bass, and S. Yin. “Structural Integrity Assessments Modular-
Probabilistic Fracture Mechanics (SIAM-PFM): User’s Guide for xLPR.” ORNL/NRC/LTR–247.
Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010.

Lahey Computer Systems. “Lahey/Fujitsu Fortran v7.1 for Windows.” Incline Village, Nevada:
Lahey Computer Systems, Inc. 2004.

Mattie, P.D. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.1.DLL.”
Albuquerque, New Mexico: Sandia National Laboratories. 2010.

Mattie, P.D., C.J. Sallaberry, J.C. Helton, and D.A. Kalinch. “Development, Analysis, and
Evaluation of a Commercial Software Framework for the Study of Extremely Low Probability of
Rupture (xLPR) Events at Nuclear Power Plants.” SAND2010-8480. Albuquerque,
New Mexico: Sandia National Laboratories. 2010.

Microsoft Corporation. “Microsoft Office Excel® 2007.” Redmond, Washington: Microsoft
Corporation. 2007.

Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.”
Columbus, Ohio: Battelle. 2010.

Press, W.H., W.T. Vetterling, S.A. Teukolsky, and B.P. Flannery. Numerical Recipes, The Art of
Scientific Computing, Fortran 77. Cambridge, Massachusetts. Cambridge University
Press. 1992.

Rahman, S. “Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part II:
Idealized Cracks and Closed-Form Equations.” Engineering Fracture Mechanics. Vol. 61.
pp. 213–230. 1998.

U.S. Nuclear Regulatory Commission and Electric Power Research Institute. “xLPR Version 1.0
Report—Technical Basis and Pilot Study Problem Results.” Washington, DC: U.S. Nuclear
Regulatory Commission, Office of Nuclear Regulatory Research; Palo Alto, California:
EPRI. 2011.

Williams, P. “Conceptual Description-XLPR-DSK-004R0_SIAM_SCFail_v2.1.” Oak Ridge,
Tennessee: Oak Ridge National Laboratory. 2010a.

Williams, P. “Conceptual Description-XLPR-DSK-004R0_SIAM_TWCFail_v2.1.” Oak Ridge,
Tennessee: Oak Ridge National Laboratory. 2010b.

B–23

Williams, P. and H. Klasky. “Conceptual Description-XLPR-DSK-004R0_SIAM_kSurf_v1.1.”
Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010a.

Williams, P. and H. Klasky. “Conceptual Description-XLPR-DSK-004R0_SIAM_kTWC_v1.1.”
Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010b.

Wolfram Research, Inc. “Wolfram Mathematica™ 7.0.” Champaign, Illinois: Wolfram
Research, Inc. 2008.

APPENDIX C

C–1

IMPLEMENTATION OF A “DUMMY” MODULE IN XLPR-GoldSim
AND XLPR-SIAM

The objective of this appendix is to document efforts that have been made to simulate
development and implementation of a “new” test module into both the xLPR-GoldSim
(XLPR-GoldSim) and xLPR-SIAM (XLPR-SIAM) platforms. This has been done as a test
exercise to gain insight into analyses of the flexibility of the frames to incorporate updates and
perform code maintenance. This work follows the general requirements that are described
in Chapter 4 of this report. An abbreviated description of the requirements for the test
module follows.

For this exercise, the test module had the following requirements:

• The module should be developed in FORTRAN and compiled into a dynamically linked

library (DLL) for use with the GoldSim-based XLPR-GoldSim or with the F2Py utility for
use with the Python-based XLPR-SIAM.

• The module should take as input two random parameters, r1 and r2, and should apply
these random factors to the crack depth and crack length (the depth and length should
also be provided as inputs to the procedure).

• The parameters r1 and r2 should be defined as random parameters where

– The inputs for these random parameters are in the master spreadsheet (in
the case of XLPR-GoldSim) or in one of the input parameter tabs (in the case
of XLPR-SIAM)

– The random parameters can be specified as distributions in xLPR (e.g., normal,
uniform, log distributions)

– The parameters can be switched from aleatory uncertainty to epistemic

uncertainty, and from one distribution to another

• The random parameters r1 and r2 should be applied after the subroutine grower

(grower_v2.1.f90). More specifically, the factors should be applied to all active cracks. If
applicable, the physical bounds for the system (e.g., thickness or diameter) should be
checked to ensure they are not exceeded due to integration of the module.

• The parameters r1 and r2 should be tracked in the set of appropriate random input
parameters (epistemic or aleatory) to support sensitivity analyses. Further, these new
input parameters should be added to appropriate elements in GoldSim output files
or databases.

Also, during the development and incorporation of the test module, the following information will
be used to compare the model frameworks (the results of this comparison are reflected in
Table 4.1 of this report).

1. The estimated time needed to incorporate a new module to each of the codes and major
difficulties faced in incorporating the new module

C–2

2. An evaluation of the availability of existing functions in frame to support the Monte Carlo
frame (i.e., define input parameters, sample input parameters, record input parameters,
manage data output from multiple realizations, display Monte Carlo outputs,
communicate with existing modules)

3. An evaluation of the capability of the codes to expose (or display) intermediate outputs
that are not in default outputs

4. An estimate of the time needed to sufficiently learn Python and GoldSim so codes can

be maintained

The “New” Test Module

The test module that will be implemented will be a FORTRAN-based subroutine,
crackenhancer_v0.1.f90. The module will receive an input array and an output array. The input
array should pass the crack length and the crack depth, as well as the random enhancement
factors r1 and r2, which will be referred to as the cracklengthenhancement and
crackdepthenhancement factors, respectively. The module will simply multiply the crack length
and the crack depth by their respective enhancement factors, which are unitless, and then
return the modified values for the crack length and depth (i.e., as depicted in the following
simplified diagram):

For interaction with GoldSim, the module must be compiled as a DLL. Also, the file must have
additional input/output values [for details, see GoldSim Technology Group (2011, Appendix C)].

Implementing the CrackEnhancer Module Into the XLPR-GoldSim Framework

The steps taken to implement the module in the XLPR-GoldSim framework are detailed next.

1. First, it was necessary to add the new crack enhancement parameters to the framework.

To do this, the model implementation requires several substeps.

a. The new parameters were incorporated into the framework by first adding the
uncertain (random) parameters in the BETA_Inputs_AE_09_30_2010.xlsx
Microsoft® Excel® spreadsheet the model used. The parameters were added
to the “Uncertain Parameters” spreadsheet and are shown in the
following screenshot:

Input:
Crack Length [m]
Crack Depth [m]
Crack Length Enhancement Factor [-]
Crack Depth Enhancement Factor [-]

Output:
Modified Crack Length [m]
Modified Crack Depth [m] crackenhancer

MODULE

C–3

Addition of the parameters to the spreadsheet allows for persistence of input
values, and manually changing the “Type” specification allows the user to change
the type to either “Aleatory” or “Epistemic.” The model is written such that the
parameters are sampled as both aleatory and epistemic (object elements for
these must be added; this will be covered in a later step), and the type is
checked in an additional switch [this logic must be added as well (type = 1
Aleatory, otherwise the element is assumed to be Epistemic)].

b. However, before the parameters could be read by GoldSim, the Excel

spreadsheet interface element in the XLPR-GoldSim model (“Beta_inputs” in
\Data_Source) had to be modified to point to the newly added cells. An example
of the required changes are shown in the following screenshot (the same
procedure should be followed for the other new parameter):

c. Next, it was necessary to add stochastic input parameters to use the array input
values for the parameters that are imported at run time from the linked Excel
spreadsheet. The XLPR-GoldSim model has been implemented such that there
are two stochastic elements sampled for each parameter regardless of intended
type (epistemic or aleatory). The locations for the sampling of the epistemic and
aleatory elements are submodel elements. Because the sampled stochastic
input elements are sampled in submodel elements, the submodel elements
(\Uncertain_Parameters\Epistemic_Uncertainty and
\Uncertain_Parameters\Aleatory_Uncertainty) must have the elements added
into their interface properties; otherwise, the values imported from Excel will not
be exposed to the submodel and the sampled values in the submodel (to be
added) will not be exposed to the global or master models. This is done by
accessing the Epistemic and Aleatory submodels and setting the interfaces (for
both submodels) to pass the variables (the output interface should be done after
adding the stochastic input elements to the submodel elements):

C–4

For both crack enhancement parameters, stochastic input elements were created
in the \Uncertain_Parameters\Epistemic_Uncertainty\ submodel and the
\Uncertain_Parameters\Aleatory_Uncertainty\ submodel. An example
screenshot for the Epistemic_Uncertainty\ submodel follows:

d. At run time, the model imports values from Excel and then, at time zero, the

Epistemic and Aleatory submodels sample values for the stochastic elements
contained there. To determine which sampled parameter (Epistemic or Aleatory)
is used for a given parameter, the “Type” entry and the GoldSim selector
elements (which are located in \Uncertain_Parameters\Sampled_Values\) are

C–5

specified in the Excel spreadsheet. The next step is to add selector elements for
both crack enhancement factors; this is shown in the following screenshot.

The DPD option is a model capability that is not required for the current release of the
xLPR, and this capability is not evaluated in this testing effort.

2. The next step in implementing the crackenhancer module is to select the appropriate

location to add an interface from the GoldSim model to the external FORTRAN module
(compiled as a DLL). The intent is to apply the crack enhancement factors to active
cracks. This can be one of the more time-consuming steps because the code must be
carefully analyzed and understood; its complexity can vary widely depending upon the
intended function of the module to be implemented. Additionally, although the GoldSim
program offers many useful tools to navigate constructed models, the relationships
between parameter values that are updated can become complex. These relationships
must be examined carefully to prevent an unintended effect upon the data. The proper
sequence of parameter updating should be maintained.

It was determined that the location to interface and apply the module would be in the
crack growth submodel (\Crack_Growth \Crack_Growth_Submodels), immediately
following the call to the external subroutine grower (grower_v2.1.f90,
grower_DLL_v2.1.dllx). The call to the external subroutine grower is made inside of the
Crack_Growth_Submodels, \Crack_Growth_sc container. The crackenhancer module
will be implemented in the Crack_Growth_Submodels, \Update_Crack_Status container.
This container is updated (for surface cracks, Type = -1) following the update of the
parameters in the Crack_Growth_sc container. Also note the Crack_Growth_Submodel
is looped over all active cracks; therefore, the crackenhancer module will be applied on
an individual crack basis (not to an array of crack length and depth values).

The call to the crackenhancer module is made before the parameters contained in the
\Update_Crack_Status container are updated. Thus, the approach used in implementing
the module is to intercept the crack length and crack depth values that have been
passed through the grower module and modify the individual crack and depth values

C–6

before passing them onto the appropriate parameters (and/or functions) to update the
crack array.

3. The next step is to carry out the implementation strategy described in Step 2.

a. Here, it is first necessary to adjust the \Crack_Growth\Crack_Growth_Submodels

interface option to expose parameters from the main model to this submodel.
This step is depicted in the following screenshot.

b. The next step is to add parameters necessary to pass input into the
crackenhancer module, the external function/DLL link to the crackenhancer DLL,
and parameters to handle output from the crackenhancer module. To do this,
several function expressions were added to the
Crack_Growth\Crack_Growth_Submodels, \Update_Crack_Status container.
The expression objects, along with the external function/DLL links to
crackenhancer, are shown in the following screenshot.

C–7

The parameters crackdepthenhance and cracklengthenhance point to the current
sampled values for the crack length and depth enhancement parameters. The
crack_depth and half_crack_length parameters point to the respective values as
returned from the grower module (i.e., Grower_sc.crack_depth and
Grower_sc.half_crack_length). The parameters enhancedcrackdepth and
enhancedcracklength are the modified values returned from the crackenhancer
module. Note that for the DLL object, the object must be linked to the DLL file
(the details of building the DLL file will be covered in a subsequent step) and the
interface options must be selected such that the input parameters and the output
parameters are properly passed (these must be in the correct order for the
module input and output arrays). The settings for the DLL element are shown in
the following two screenshots.

C–8

c. In addition to the elements added to the \Update_Crack_Status container, the
definitions for the parameters Updated_Depth, Updated_Type and Updated_Length
must be updated so that they use the enhanced crack depth and size values. The
appropriate changes are shown in the following screenshots:

C–9

For the Updated_Type, if the crack length is greater than or equal to the wall thickness, the
crack type is changed to -2, indicating a through wall crack.

C–10

4. Additionally, the crackenhancer module must be compiled as a DLL and have the

appropriate elements to interact with GoldSim [for details, see GoldSim Technology
Group (2011, Appendix C)].

a. Based upon requirements from GoldSim, the DLL module must have additional

input parameters (i.e., a method and a state variable), which are used for
controlling calls to the DLL (e.g., initializing the DLL, querying number of
input/output variables). This requirement thus makes it necessary to add the
appropriate logic to the subroutine to handle this communication requirement.

b. The module source code is relatively simple and is included next for reference.

! This is a simple add-on module to test the complexity of adding an
! addtional module to XLPR-SIAM and XLPR-GoldSim. The purpose of the module is to
! multiply crack length and crack depth values by the respective
! enhancement factors.
! --------------------
 Subroutine crackenhancer(method, state, input, output)
 implicit none

 INTEGER(4), value :: method ! required by GoldSim(TM)
 INTEGER(4) :: state ! required by GoldSim(TM)
 REAL(8) :: input(*), output(*)

 real(8) :: retavalue = 0 ! temp. holder for enhanced depth
 real(8) :: retcvalue = 0 ! temp. holder for enhanced length

 real(8) :: cracklengthenhance = 0 ! length enhancement factor
 real(8) :: crackdepthenhance = 0 ! depth enhancement factor

 real(8) :: crackdepth = 0 ! crack depth [m]
 real(8) :: crackhlflen = 0 ! crack half-length [m]

 real(8), dimension(2) :: outvector ! variable for output data

 CHARACTER(len=22) :: logfilename = 'testlogger.log' ! log filename

C–11

 INTEGER :: ioerror

 ! The case options are following requirements from GoldSim(TM).
 ! See the User's Manual Appendix C for detailed information.
 select case (method)

 case(0) ! Initialize
 continue
 case(1) ! Perform calculations

 crackdepthenhance = input(2)
 cracklengthenhance = input(1)
 crackdepth = input(3)
 crackhlflen = input(4)

 ! Simply multiply the crack depth and half-length by their
 ! respective enhancement factors
 retavalue = crackdepthenhance*crackdepth
 retcvalue = cracklengthenhance*crackhlflen

 output(1) = retavalue
 output(2) = retcvalue

 ! ELT, 12/27/2010 --- Opening log file to for intermediate values
 ! Open the input WRITE(*,*) fulldataset(ivars,icases)file
 OPEN (UNIT=99, FILE=logfilename, STATUS='OLD', &
 ACTION='WRITE', ACCESS='APPEND', IOSTAT=ioerror)
 WRITE(99,*) '**'
 WRITE(99,*) 'input array values:'
 WRITE(99,*) 'input(1) = ',input(1)
 WRITE(99,*) 'input(2) = ',input(2)
 WRITE(99,*) 'input(3) = ',input(3)
 WRITE(99,*) 'input(4) = ',input(4)
 WRITE(99,*) 'output array values:'
 WRITE(99,*) 'ouput(1) = ',output(1)
 WRITE(99,*) 'ouput(2) = ',output(2)
 WRITE(99,*) '..'

 case(2) ! Report version number.
 output(1)=0.1
 case(3) ! Report input/output number array arguments
 output(1)=4.00 ! Number of input variables in input array
 output(2)=2.00 ! Number of output variables in output array
 case(99) ! Clean up
 continue
 end select

 end subroutine crackenhancer

c. A separate write to an external file was added to the model (see previous source)

which logs the module input and output array values. This was done to verify
that the module was functioning as expected.

d. The authors of the XLPR-GoldSim utilized the Intel® FORTRAN compiler. In the
current effort, the crackenhancer module was implemented using the GNU
FORTRAN compiler, gfortran. The following commands (and flags) were used in
building the DLL:

gfortran –shared –mrtd –o <Name of DLL File> <Object Code>

In the source code, specification of the exposed function/subroutine is not
needed if using gfortran. Other compilers differ in this regard.

C–12

5. To fully assess the flexibility of the frameworks for exposing of parameter values for
output and post-processing, an additional task was performed to expose the crack
half-length and depth values before modification by the “new” crack enhancer module to
external logging and post-processing. The process is detailed as follows.

The results exported for post-processing in XLPR-GoldSim are located in
\Time_zero\Controls\Dashboards_and_Results\Vector_Export_Results. Within this
container, there are several local containers, and each contain an expression (called
Vector_input) linked to several time history elements, one for each of the 19 tracked
cracks (see the following screenshot). Each of the time history elements contains an
option to export results to an external text file. “Export automatically when simulation
completes” should be selected even though the global “Automatic Export for Result
Elements” (see Model, Options tab from the main GoldSim window) may be set to not
export results. If “Export automatically when simulation completes” is not selected, the
results will not export even if the “Export Now” command is requested from the Model,
Options tab.

Localized containers were created in the
\Time_zero\Controls\Dashboards_and_Results\Vector_Export_Results folder so that the
desired value could be linked to the new Vector_Input expression elements, one for each
container. Another container (i.e., PND_Crack_TS) was copied, pasted, and renamed. The
new localized containers, old_crack_half_lengths and old_crack_depths, are shown in the
following screenshot.

C–13

The options for the Vector_Input expression and each of the Crack# time history elements
(i.e., Crack1, Crack2 and so on) were edited in the new containers. It is also necessary ensure
the unmodified crack length and depth values can be passed to the respective Vector_Input
expressions. This requires several steps.

First, for convenience (naming of variables), new data elements were created in the
\Crack_Growth\Crack_Growth_Submodels\Update_Crack_Status folder. These parameters
were added to pass the crack depth and half-length values before the values are passed to the
crackenhancer module.

C–14

The old_crack_depth and old_half_crack_length values were exposed outside of the local
Crack_Growth_Submodel. To do this, the values were added to the Output Interface Definition
list in the Crack_Growth_Submodel properties as shown in the following screenshot.

The crack length and depth values at this point are only for individual cracks, which are values
for a given realization and timestep. Therefore, the values need to be collected into vectors
containing the 19 cracks being tracked, which are updated for the given timestep/realization.
This step is done for several parameters in the \Crack_Growth\Crack_Growth_Results
container, which is also depicted in the following screenshot. To accumulate the individual
crack values for the 19 tracked cracks, the XLPR-GoldSim model authors utilized several
elements (selector elements and discrete change elements with triggers) to update an

C–15

expression vector containing 19 array elements representing each crack value for the
desired parameter.

An example for the crack depth is shown in the following screenshots. First, a Selector element,
“old_depth_gr,” was added to ensure the initial crack depth is updated when the crack type is -1
for a surface crack (tracked by the LoopCount, which loops over the 19 respective cracks). In
this case, the updated value is linked to the old_crack_depth value passed from
Crack_GrowthSubmodels.

C–16

Here, two Discrete Change elements are used in conjunction with an Integrator element; the
Discrete Change elements are used to trigger updating of the Integrator element. The Discrete
Change element “vector_old_depth_grower” is used to generate a vector of 19 elements (each
representing a crack). The elements are all zero with the exception of the element
corresponding to the present loop count (i.e., the loop count is used to track the crack index).
The intent is to generate a vector of zeros, except in one entry tracking the property of the
updated crack. The vector (“vector_old_depth_grower”) is then added to another vector
(i.e., the Integrator element, “old_Crack_Depth”) keeping track of the 19 cracks. The sequential
updating produces a vector containing the 19 crack depths for the given timestep. In setting up
this sequence of parameter updating, note there are several parameter options for the Discrete
Change and Integrator elements. As shown in the following screenshot, a Discrete Change
element, “Reference_distance_grower,” is triggered (updated) on a change in the timestep
(etime) and is set to initialize a vector containing 19 elements, all zero. Thus, the value is
calculated (initialized) at the beginning of each timestep. This element is used in the
options/calculation of the remaining two elements, the Discrete Change element
“vector_old_depth_grower” and the Integrator element “old_Crack_Depth.” The Instruction field
is set to “Replace,” and when this event is triggered for a new timestep, the Integrator is reset.

C–17

The Discrete Change element “vector_old_depth_grower” is the vector containing all zeros
except for the entry corresponding to the tracked crack by the loop count. See the following
screenshot for the options of the Value and Trigger settings. The Value entry in Discrete
Change Properties is specified as vector(nb_cracks, if(row=~LoopCount, old_depth_gr, 0 m *
Reference_distance_grower.Follow_this)). This specifies that all of the elements are zero
except the current crack, which has the value from the Selector old_depth_gr. The “Follow_this”
command used in the value entry is a special GoldSim command that is used to control the
calculation sequence (GoldSim Technology Group, 2011, p. 304). This value ensures that the
value is updated after the initialization of the “Reference_distance_grower” in the current
timestep. The Trigger setting ensures that the present element is updated during each pass
through the looping over cracks. The value for Instruction is set to “Add” to force an update of
the Integrator element when the Integrator element vector is added to the present vector from
the Discrete Change element, thus updating the crack depth for the present crack/loop iteration.

C–18

For the Integrator element “old_Crack_Depth,” the element is defined as a vector for the
19 cracks. The element should be driven by the Discrete Change elements
“vector_old_depth_grower” and “Reference_distance_grower.” Therefore, these elements are
listed in the “Discrete Change” field for this element (i.e., Discrete Change =
Reference_distance_grower;vector_old_depth_grower).

C–19

The vector expression (tracking the 19 cracks) represented by the Integrator Elements
(old_Crack_Depth” and “old_Half_Crack_Length”) is the vector calculated for the given timestep
of a realization. For convenience, expression elements used in the results were collected in the
\Time_zero\Controls\Dashboards_and_Results\Results container. Following this approach,
expressions for the crack depth and half-lengths were added into this container and linked to the
respective expression elements (“old_Crack_Depth” and “old_Half_Crack_Length”) contained in
\Crack_Growth\Crack_Growth_Results as shown in the following.

In regard to the elements contained in
\Time_zero\Controls\Dashboards_and_Results\Vector_Export_Results, the Vector_Input values
for each localized container (old_crack_half_lengths and old_crack_depths) should be linked to
the respective values for crack half-length and depth collected in the
\Crack_Growth\Crack_Growth_Results container as shown in the following screenshot for the
old_half_length.

C–20

Each of the individual time history elements for cracks 1 to 19 for both containers
(old_crack_half_lengths and old_crack_depths) was modified so that the appropriate vector
element (representing the crack number) was tracked and a file name for the variable data
export was input as shown in the following two screenshots.

C–21

C–22

Finally, the new exported parameters must be added to the Variables_List.txt input file for
post-processing. As shown in the following screenshot, the file names for all of the exported
variable values were added to the variables_list.txt document.

Implementing the CrackEnhancer Module Into the XLPR-SIAM Framework

The following details the steps taken to implement the module.

1. First, it was necessary to add the new crack enhancement parameters to the framework.

To do this, the model implementation requires several substeps:

C–23

The XLPR-SIAM framework uses a database file (several are contained in the project
files) to maintain persistence of parameter values. The database files are in Berkeley
database format and contain a key entry for the realization number as well as the
associated realization python object, which contains parameter values and objects for
the realization (i.e., the crack container with crack objects, which contain the various
crack specification parameters).

After careful analyses, it was decided that the best place to insert the additional
parameters would be as parameters in the crack container.

A class diagram for the Pipeweld class is shown in the following, as excerpted from
Klasky, et al. (2010a, Figure 38).

The CrackContainer is part of the PipeWeld class and contains all of the crack objects
and their associated parameters (i.e., length and depth). The PipeWeld class is
contained in each realization object; these are imported from the database by the
realizationController during running of the model (controlled by xLPRController).

a. Adding the crack enhancement factors to the crack container object required

minimal effort. To do this, the parameters were added to the source code
defining the CrackContainer class that is contained in the file:
./src/model/CracksModule.py. The parameters were added using the following
source code entry in the CrackContainer class definition.

C–24

#===
Adding custom parameters here
#===
NOTE: Here adding definitions for crack enhancement
parameters.
#---
Zcracklengthenhance
mean=999;stdv=9
args=[]
args.append(mean)
args.append('nondim')
kwds = variateDao.createUniformVariate('Zcracklengthenhance', mean, stdv, args[1], 'epistemic')
self.Zcracklengthenhance = xLPRVariate(*args, **kwds)
self.Zcracklengthenhance.setReqdUnits('nondim')
self.Zcracklengthenhance.setUnitsType('nondim')
self.Zcracklengthenhance.setDescription('A custom parameter to enhance crack length values')
cracksizeenhance
mean=888;stdv=8
args=[]
args.append(mean)
args.append('nondim')
kwds = variateDao.createUniformVariate('Zcracksizeenhance', mean, stdv, args[1], 'epistemic')
self.Zcracksizeenhance = xLPRVariate(*args, **kwds)
self.Zcracksizeenhance.setReqdUnits('nondim')
self.Zcracksizeenhance.setUnitsType('nondim')
self.Zcracksizeenhance.setDescription('A custom parameter to enhance crack size values')

Zcracksizeenhance in the previous source code is the parameter used for
enhancing the crack depth.

This step was particularly straightforward due to the predefined xLPRVariate
class (part of the data structure developed for the XLPR-SIAM framework). Once
added into the crack container, the variables of type xLPRVariate are initialized
and are saved to the database project file when the program is run. However, to
adjust the parameter values, the variables must be added to the display on the
graphical user interface (GUI) to permit user interaction and adjustment of the
parameter values.

b. The next task required for adding the crack enhancement parameters was to add

the crack enhancement parameters to be displayed on the GUI so that users can
update/adjust parameter values. This modification requires some additional
knowledge of PyQT and can potentially be complex depending on the nature of
the changes needed. The XLPR-SIAM source code along with Summerfield
(2007) was used to determine what adjustments would be needed to add the
parameter interface to the GUI.

It was decided the easiest place to add the variable to the XLPR-SIAM GUI
interface would be to the list of parameters provided in the “Crack Initiation and
Growth” tab, as in the following screenshot:

C–25

To add the parameter to this tab, it is important to understand how the
developers added variable values to the GUI display. When the XLPR-SIAM GUI
is running, the parameter values are updated from the database project file and
loaded into the Qt widgets for display (i.e., the tabbed lists of data). The
parameter values displayed in the tabbed panes are generated by filtering lists of
the variables contained in the database file.

The process is done in the following manner for the “Crack Initiation and Growth”
tabbed pane parameter entries. The GUI is initiated when the
SIAM_MainWindow.pyw python code is run (./src/view/SIAM_MainWindow.pyw).
Upon loading or creating a project file, the main loop (the main loop for the Qt
GUI) sets the file name from user input and then calls the xLPRModule() (a
method defined in the SIAM_MainWindow.pyw file).

This method in turn calls the class object xLPRDlg(args.), which is the
./src/view/customviews/TableVariateViewModule.py class VariateTableView.
This object contains methods that handle a number of operations (e.g., loading
and saving variables, linking to post-processing) used by elements of the GUI
contained in the tabbed panes (i.e., the tabbed panes in the previous
screenshots). Most importantly for the current task, the class has a method for
creating tabled lists of variables (i.e., tables of parameters): createView. This
method contains parameters to specify options for the table of parameters object.
The method uses an imported class VariateTableModel, which is defined in the
file ./src/view/model/TableModelViewModule.py, to create the actual Qt table of
parameters object (the Qt table widget). This class contains several methods
that are used to order and display the data set contained in the table
[e.g., loading data values from the database file, handling setting data entry
values, parsing and creating lists of variables (epistemic, aleatory, constants),
specifying the column entries (‘Value,’ ‘Uncertainty,’ “Distribution,’ …), and
sorting based the row order based upon selection of a particular column
parameter.] The important part of this class is that a filter is applied to retrieve

C–26

variable values. In particular for the variables displayed on the “Crack Initiation
and Growth” tabbed pane, the values are filtered using the filterFlag ‘initiation.’
This section of the source code (./src/view/model/TableModelViewModule.py) is
near the comment entry (starting near line 623).

#===
Variate Class filters
#===
if self.filterClass == 'variate':

 #===
 # captures all variates
 #===
 if self.filterFlag == 'all':
 self.variates = self.combinedVariateList
 #===
 # captures crack initiation model variates

 #===
 elif self.filterFlag == 'initiation':
 for var in self.combinedVariateList:
 name = var.getName()
 qname = QString(name)
 if qname.startsWith(QString('initiation'), Qt.CaseInsensitive):
 self.variates.append(var)
 elif qname.startsWith(QString('grower_'), Qt.CaseInsensitive):
 self.variates.append(var)
 #elif qname.startsWith(QString('cod_'), Qt.CaseInsensitive):
 #self.variates.append(var)
 elif qname.startsWith(QString('Zcrack'), Qt.CaseInsensitive):
 self.variates.append(var)

The additional “else if” statement is added to parse the variable name to check
matching to the string pattern ‘Zcrack.’ If true, the variable is appended to the list
of variables to be included in the table. This ensures that the newly added
parameters Zcracksizeenhance and Zcracklengthenhance are included in the
parameters displayed in the table for the “Crack Initiation and Growth” tabbed
pane. Optionally, the use of a new filter is not explicitly required. For example,
the parameter name can be selected such that it will be filtered to appear in the
tab (i.e., “initiation_cracklengthenhance” could have been selected. In this case,
there would be no need for an addition to the source code. A screenshot of the
tabbed pane containing the added parameters follows.

C–27

From this interface, the values for items such as parameters and distribution type
can be adjusted and saved to the database using the existing XLPR-SIAM
framework structure.

2. The next step in implementing the crackenhancer module is to select the appropriate

location to add an interface to the external FORTRAN module.

a. This was relatively straightforward as all FORTRAN modules use a common
model interface through the TimeLoop module. The TimeLoop module is a
FORTRAN code that is compiled with a FORTRAN to python (f2py) wrapper.
The wrapper exposes selected subroutines and variables to python. In
XLPR-SIAM, the parameter values for the TimeLoop module are set (passed) in
the TimeLoopServiceModule (./src/service/TimeLoopServiceModule.py). In the
next step, code was added to the TimeLoopServiceModule so that the values for
crack enhancement parameters can be passed to the TimeLoop and, ultimately,
a crack enhancement module.

b. For a given realization, all parameter values needed are loaded into the
TimeLoop module (initialization block) and subsequent calls to the external
modules follow the order and logic detailed in the xLPR Timeloop Flow Chart
shown in Figure C-1, as excerpted from Klasky, et al. (2010b).

C–28

Figure C–1. The xLPR TimeLoop Execution Diagram Excerpted From

Klasky, et al. (2010a)

c. The crack enhancement module was added to the TimeLoop module sequence
following the Crack Growth Module and before Crack Coalescence. The call
to the crack enhancement module was added to the TimeLoop_V2.1.f90
source code.

3. The next step was to add the new crackenhancer module and interface for the

parameters. This requires several substeps.

a. To pass the variables to the timeloop module, the crack enhancement parameter
values must be passed to the timeloop module. The newly inserted variables in
the timeloop module (TimeLoop_v2.1.f90) were named zcracklengthenhance and
zcracksizeenhance. At run time, the module is loaded as a timeloop object. The
variable values are passed in the TimeLoopServiceModule. The following was
added to the TimeLoopServiceModule code:

C–29

ADDED TO ./src/service/TimeLoopServiceModule.py:

 #===
 # Load Zcracklenghenhance and Zcracksizeehance into timeloop module
 timeloop.zcracklengthenhance = CC.Zcracklengthenhance.getValue()
 timeloop.zcracksizeenhance = CC.Zcracksizeenhance.getValue()

b. The parameters were added to the timeloop module source code. Input and

output handling arrays were also defined for passing from the timeloop module
and calling the crackenhancer module. Further, the call to the crack enhancer
module is made. The following code was added to the TimeLoop_v2.1.f90
source code (notes are indicated to show the location in the source code where
the additions were made).

ADDED TO TimeLoop_v2.1.f90:

Adding crack enhancement variables to the global namespace for the module timeloop.
An additional output file is added and called for debugging and verifying
parameter values.

 !---!
! Adding variables for zcracklengthenhance and
! zcracksizeenhance
!---!
real(8) :: zcracklengthenhance
real(8) :: zcracksizeenhance
! adding a debugging filename (this should be commented out, just for
! testing verifying
CHARACTER(len=32) :: filename

Adding debug output to TimeLoop_v2.1.f90 subroutine write_timeloop_input_log in order to
verify passing of variables and maintain consistency with logging of variables.

 subroutine write_timeloop_input_log(f_log)
 implicit none
 character(LEN=*), intent(in) :: f_log
 integer :: icrack, ierr, i
 real (8), external :: get_lognorm_q
 !---!
 ! Compiler directive used to create the Python/C API bindings
 !---!
 !f2py intent(in) f_log
 open(unit=10,file=f_log,status='UNKNOWN',position='APPEND', &
 action='WRITE', iostat=ierr)
 write(10,'(//'' *************************************** '')')
 write(10,'('' Input Data for Realization '',a6)') realization_key(1:6)
 write(10,'('' Realization Key = '',a20)') realization_key
 write(10,'('' *************************************** '')')

 write(10,'(/'' -------------------------------------- '')')
 write(10,'(''MOD - Enhancement factors '')')
 write(10,'('' -------------------------------------- '')')
 write(10,'('' zcracklengthenhance = '',ES12.5)') zcracklengthenhance
 write(10,'('' zcracksizeenhance = '',ES12.5)') zcracksizeenhance

Adding input and output arrays for call from timeloop module to custom crackenhancer module
in timeloop subroutine run().

C–30

!--! Interface
variables for crackenhancer.v0.1.f90
! ---
 real (8),dimension(2) :: in_crackenhancer
 real (8),dimension(1) :: out_crackenhancer

Initialize the input and output arrays in timeloop subroutine run().
 !==
 ! Initialize crackenhancer input/output interface arrays
 !==
 in_crackenhancer(1) = zcracklengthenhance
 in_crackenhancer(2) = zcracksizeenhance
 in_crackenhancer(3) = 0
 in_crackenhancer(4) = 0
 out_crackenhancer(1) = 0
 out_crackenhancer(2) = 0

Opening the additional output file for debugging and verifying parameter values.

 !==
 ! Opening debugging file
 filename='crackenhancerdebug.txt'
 open(unit=101,file=filename,status='UNKNOWN',position='APPEND',&
 action='WRITE',iostat=ierr)
 write(101,'(//'' *************************************** '')')
 write(101,'('' Input Data for Realization '',a6)') realization_key(1:6)
 write(101,'('' Realization Key = '',a20)') realization_key
 write(101,'('' *************************************** '')')

 write(101,'(/'' -------------------------------------- '')')
 write(101,'(''MOD - Enhancement factors '')')
 write(101,'('' -------------------------------------- '')')
 write(101,'('' zcracklengthenhance = '',ES12.5)') zcracklengthenhance
 write(101,'('' zcracksizeenhance = '',ES12.5)') zcracksizeenhance

The call to the crackenhancer module is made following grower. The call to the crack
enhancement module is made only if the crack type is set to the value of -1 for a surface crack,
consistent with the same call made in XLPR-GoldSim.

 …
 if (crack_ctype(icrack) .LT. 0) then
 call grower(method, state, in_grower, out_grower)
 time_grower = time_grower + out_grower(1)
 a = out_grower(2) ! crack depth [m]
 c = out_grower(3) ! crack half-length after grower[m]
 error_grower = int(out_grower(4))! error flag [-]
 ! --
 ! Adding interface to crackenhancer module
 ! --
 ! load current values into crackenhancer input vector
 in_crackenhancer(1) = zcracklengthenhance
 in_crackenhancer(2) = zcracksizeenhance
 in_crackenhancer(3) = a ! crack depth [m]
 in_crackenhancer(4) = c ! crack half-length after grower
 write(101,'('' Crack Initiated = '',i12)') icrack
 write(101,'('' a before = '',ES12.5)') a
 write(101,'('' c begore = '',ES12.5)') c
 if (crack_ctype(icrack) .EQ. -1) then
 call crackenhancer(in_crackenhancer, out_crackenhancer)
 endif
 ! update a and c values
 a = out_crackenhancer(1)
 c = out_crackenhancer(2)
 write(101,'('' a after = '',ES12.5)') a
 write(101,'('' c after = '',ES12.5)') c
 ! --

C–31

 ! surface crack (SC) becomes a thru-wall crack (TWC) by growing
 ! through the wall
 ! --
 if (a .GT. thickness) then

…

c. The source code for the crack enhancer module is similar to the source code

used on the version for XLPR-GoldSim (the calculation is the same); the
difference between the source code used for XLPR-GoldSim and XLPR-SIAM is
the additional logic statements required for the XLPR-GoldSim version to interact
with GoldSim. The source code for the XLPR-SIAM crackenhancer version
follows (also see file crackenhancer_v0.1_XLPR-SIAM.f90):

! This is a simple add-on module to test the complexity of adding an
! addtional module to SIAM_xLPR. The purpose of the module is to
! multiply crack length and crack depth values by the respective
! enhancement factors.
Subroutine crackenhancer(in, out)

 implicit none

 real(8) ,dimension(4) :: in
 real(8), dimension(2) :: out

 real(8) :: retavalue = 0
 real(8) :: retcvalue = 0

 real(8) :: cracklengthenhance = 0
 real(8) :: crackdepthenhance = 0

 real(8) :: crackdepth = 0 ! crack depth [m]
 real(8) :: crackhlflen = 0 ! crack half-length [m]

 real(8), dimension(2) :: outvector

 crackdepthenhance = in(2)
 cracklengthenhance = in(1)
 crackdepth = in(3)
 crackhlflen = in(4)

 retavalue = crackdepthenhance*crackdepth
 retcvalue = cracklengthenhance*crackhlflen

 out(1) = retavalue
 out(2) = retcvalue

 end subroutine crackenhancer

4. The last step is compiling the implementation with the crack enhancement module. To

do this, the source code for the timeloop module, along with the crackenhancer module,
was compiled. For the interface to python, the timeloop module needs to be compiled as
a PYD (python dynamic file) using f2py, the FORTRAN-to-python interface generator
program. A wrapper file is needed to generate the pyd file with f2py. This can be
generated by hand and/or automatically using f2py. The authors of XLPR-SIAM have
added an additional FORTRAN-to-Python utility (f2py utility) to facilitate making the
necessary calls to f2py.

a. The FORTRAN source code files were compiled as normal. This can be done

from the command line or by using the f2py utility.

C–32

b. The process for building a wrapper is detailed in Klasky, et al. (2010b) (see
Chapter 4) and was followed exactly.

c. When attempting to create the wrapper file (i.e., compiling the wrapper file), the

process failed on the local machine. The following error output was observed in
the captured output in the f2py GUI interface:

c:/gcc/bin/../lib/gcc/i686-pc-mingw32/4.5.1/../../../../i686-pc-mingw32/bin/ld.exe:
cannot find -lmsvcr71
collect2: ld returned 1 exit status

d. The wrapper can be built manually from the command line using the f2py

configuration file (pyf) (as generated from the f2py Utility). The lmsvcr71 flag
may be the cause of the problems on the test system. Because the compilation
command call (and flags) is hardwired into the f2py Utility and cannot be
deselected, the compilation was done manually from the command line. To
compile the PYD wrapper, the following command and flags were used:

c:\python26\python.exe c:\python26\scripts\f2py.py --
verbose --fcompiler=gnu95 --compiler=mingw32 –c
TimeLoopSignature.pyf Coalescence…. <list of .f90 files> …
.f90

This issue could be a problem with the local system setup. However, the issue
for the local machine has not been explored further. Test runs of the f2py Utility
on several other systems appear to work without this issue for recompilation of
the original installation files.

The compiled PYD file is the ./src/service/temp directory. This is a temporary
directory that is created by the f2py Utility. When the “Commit Wrapper to
Service Layer” is selected, the compiled PYD file is copied from this directory and
used to write over the TimeLoopWrapper.pyd file in the
./src/service/timeloop directory.

5. To fully assess the flexibility of the frameworks for exposing of parameter values for

output and post-processing, an additional task was performed to expose the crack
half-length and depth values before modification by the “new” crack enhancer module to
external logging and post-processing. The process is detailed as follows.

In XLPR-SIAM, parameter data are exported for post-processing by opening hard-coded
data streams to write to external text files during the program execution for all
realizations. The initial data stream links to external text files are initiated in the
RealizationsControllerModule where calls are made to the ./src/utils/xLPRTools.py
method createWriteOnlyTextFile to create data streams to external files for appending
parameter values at each timestep for all realizations. Note that the streams used for
this purpose in XLPR-SIAM are Qt objects (i.e., Qt.QFile and Qt.QTextStream). When a
realization is run through the timeloop module, arrays are defined to collect the
parameter values for each timestep. When the realization completes, the values are
passed back to python and then written to the file streams in the
TimeLoopServiceModule at the end of each realization.

C–33

To add/expose new variables for post-processing, the source code for several files must
be edited. Additionally, the timeloop module must be edited and recompiled as a PYD
file. The steps required to expose the crack length and crack depth values (before
modification by the crackenhancer module) are detailed next.

Data dictionaries are used to pass and recall file stream objects, are created in
./src/controller/RealizationsControllerModule.py, and are also called/used to update
values for each realization in ./src/service/TimeLoopServiceModule.py. First, the
file/stream objects must be created.

When the TimeLoopServiceModule method executeTimeLoop is called (running a
realization), the stream dictionaries are passed to the method. To implement these
changes, the following code was added to the
./src/controller/RealizationsControllerModule.py file (note the edits are excerpted from
the file with several lines of code removed; newly added code has been highlighted).

< Here, a number of lines of code are omitted. >

def createOutputDataDict(self, numE, numA, pipeWeld, loadContainer):
 """
 create dictionaries that contain arrays of output data for post-processing
 """
 #===
 # determine array sizes
 #===
 self.numE = numE
 self.numA = numA
 self.tfinal = loadContainer.tfinal.getValue()
 self.time_step = loadContainer.time_step.getValue()
 numTimeSteps = int(self.tfinal/self.time_step)
 self.numTimeSteps = numTimeSteps + 1

 #===
 # load into dictionary
 #===
 self.output_data_dict['depth'] = 3
 self.output_data_dict['half_length'] = 3
 self.output_data_dict['old_depth'] = 3
 self.output_data_dict['old_half_length'] = 3
 self.output_data_dict['surfk0'] = 3
 self.output_data_dict['surfk90'] = 3
 self.output_data_dict['pnd'] = 3
 self.output_data_dict['leakrate'] = 3
 self.output_data_dict['coa'] = 3

 self.output_data_dict['FracArea'] = 1
 self.output_data_dict['total_leakrate'] = 1
 #self.output_data_dict['SC_time'] = 1
 self.output_data_dict['FirstLeak'] = 1
 self.output_data_dict['Rupture'] = 1
 self.output_data_dict['Rupture_SSE'] = 1
 self.output_data_dict['FirstInit'] = 1
 self.output_data_dict['COA1'] = 1
 self.output_data_dict['COA3'] = 1

< Here, a number of lines of code are omitted. >
 < In method def createExecuteRealization >

 #===
 # create dictionaries to hold IO QTextStreams
 # provide for first 3 initiating cracks
 #===

C–34

 self.stream_dict_depth = {}
 self.stream_dict_old_depth = {} # Custom tracking for non-modified crack depth
 self.stream_dict_half_length = {}
 self.stream_dict_old_half_length = {} # Custom tracking for non-modified half_length
 self.stream_dict_surfk0 = {}
 self.stream_dict_surfk90 = {}
 self.stream_dict_coa = {}
 self.stream_dict_leakrate = {}

 for i in range(19):
 icrk = "%03d" % (i+1)
 pnd_fname = "pnd_" + icrk + ".txt"
 ctype_fname = "ctype_" + icrk + ".txt"
 (stream_pnd, fh_pnd) = Tools.createWriteOnlyTextFile(pnd_fname,
 self.postPath, prefix)
 (stream_ctype, fh_ctype) = Tools.createWriteOnlyTextFile(ctype_fname,
 self.postPath, prefix)
 self.stream_dict_pnd[pnd_fname] = (stream_pnd, fh_pnd, pnd_fname)
 self.stream_dict_ctype[ctype_fname] = (stream_ctype, fh_ctype, ctype_fname)

 for i in range(3):
 icrk = "%03d" % (i+1)
 depth_fname = "depth_" + icrk + ".txt"
 old_depth_fname = "old_depth_" + icrk + ".txt"
 half_length_fname = "half_length_" + icrk + ".txt"
 old_half_length_fname = "old_half_length_" + icrk + ".txt"
 surfk0_fname = "surfk0_" + icrk + ".txt"
 surfk90_fname = "surfk90_" + icrk + ".txt"
 coa_fname = "coa_" + icrk + ".txt"
 leakrate_fname = "leakrate_" + icrk + ".txt"

 (stream_depth, fh_depth) = Tools.createWriteOnlyTextFile(depth_fname,
self.postPath, prefix)
 (stream_old_depth, fh_old_depth) = Tools.createWriteOnlyTextFile(
old_depth_fname, self.postPath, prefix)
 (stream_half_length, fh_half_length)= Tools.createWriteOnlyTextFile(
half_length_fname, self.postPath, prefix)
 (stream_old_half_length, fh_old_half_length) = Tools.createWriteOnlyTextFile(
old_half_length_fname, self.postPath, prefix)
 (stream_surfk0, fh_surfk0) = Tools.createWriteOnlyTextFile(surfk0_fname,
self.postPath, prefix)
 (stream_surfk90, fh_surfk90) = Tools.createWriteOnlyTextFile(surfk90_fname,
self.postPath, prefix)
 (stream_coa, fh_coa) = Tools.createWriteOnlyTextFile(coa_fname,
self.postPath, prefix)
 (stream_leakrate, fh_leakrate) = Tools.createWriteOnlyTextFile(
leakrate_fname, self.postPath, prefix)

 #print("i = ",i)
 #print("stream_old_depth: ",stream_old_depth)

 self.stream_dict_depth[depth_fname] = (stream_depth, fh_depth,
 depth_fname)
 self.stream_dict_old_depth[old_depth_fname] = (stream_old_depth,
 fh_old_depth, old_depth_fname)
 self.stream_dict_half_length[half_length_fname] = (stream_half_length,
 fh_half_length, half_length_fname)
 self.stream_dict_old_half_length[old_half_length_fname] = (stream_old_half_length,
 fh_old_half_length, old_half_length_fname)
 self.stream_dict_surfk0[surfk0_fname] = (stream_surfk0, fh_surfk0,
 surfk0_fname)
 self.stream_dict_surfk90[surfk90_fname] = (stream_surfk90, fh_surfk90,
 surfk90_fname)
 self.stream_dict_coa[coa_fname] = (stream_coa, fh_coa, coa_fname)
 self.stream_dict_leakrate[leakrate_fname] = (stream_leakrate,
 fh_leakrate, leakrate_fname)

C–35

< Here, a number of lines of code are omitted. >

 #===
 # carry out timeloop execution for this trial
 #===
 TimeLoopService.executeTimeLoop(trialObject, self.debug, self.deterministic,
 self.stream_dict,
 self.stream_dict_pnd,
 self.stream_dict_ctype,
 self.stream_dict_other,
 self.stream_dict_depth,
 self.stream_dict_old_depth,
 self.stream_dict_half_length,
 self.stream_dict_old_half_length,
 self.stream_dict_surfk0,
 self.stream_dict_surfk90,
 self.stream_dict_coa,
 self.stream_dict_leakrate,
 base)

Now that the stream/file objects are created and are passed to the TimeLoopService module for
each execution of a realization, the next step is to edit the TimeLoop module and ensure that
the crack length and depth values are captured into arrays. The
./src/service/timeloop/TimeLoop_V2.1_MOD.f90 source code is edited as follows. First, new
parameters were defined (olddepth and oldhalf) to pass the crack length and depth values
before modification by the crackenhancer module. Arrays of dimension 720 × 19 are created to
hold the parameter values for each timestep and crack id, respectively. Values for the crack
length and depth are captured during looping over cracks and timesteps in the parameter
olddepth and oldhalf. These values are then written into the appropriate elements in the
crack_old_depth and crack_old_half_length and ultimately passed to the appropriate elements
in the arrays crack_old_depth_log and crack_old_half_length_log, which are populated with the
values for all timesteps and cracks. The values contained for these arrays are exposed to the
python TimeLoopServiceModule.

< Here, a number of lines of code are omitted. >

!---!
! Adding variables for zcracklengthenhance and
! zcracksizeenhance
!---!
real(8) :: zcracklengthenhance
real(8) :: zcracksizeenhance
real(8) :: olddepth
real(8) :: oldhalf
! adding a debugging filename (this should be commented out, just for
! testing verifying
CHARACTER(len=32) :: filename

< Here, a number of lines of code are omitted. >

!---!
! output data for logging and post-processing of 1st three cracks
!---!
integer,dimension(0:720,19) :: crack_ctype_log ! [-]
real(8),dimension(0:720,19) :: crack_depth_log ! [m]
real(8),dimension(0:720,19) :: crack_old_depth_log ! [m]
real(8),dimension(0:720,19) :: crack_half_length_log ! [m]
real(8),dimension(0:720,19) :: crack_old_half_length_log ! [m]
real(8),dimension(0:720,19) :: crack_surfk0_log ! [MPa-m**0.5]
real(8),dimension(0:720,19) :: crack_surfk90_log ! [MPa-m**0.5]
real(8),dimension(0:720,19) :: crack_average_coa_log ! [m**2]
real(8),dimension(0:720,19) :: crack_leakrate_log ! [m**3/sec]

C–36

real(8),dimension(0:720,19) :: crack_pond_log ! [-]
real(8),dimension(0:720,19) :: crack_frac_area_log ! [m**2]

< Here, a number of lines of code are omitted. >

!---!
! variable data for cracks
!---!
real(8),dimension(30) :: crack_depth ! [m]
real(8),dimension(30) :: crack_old_depth ! [m]
real(8),dimension(30) :: crack_half_length ! [m]
real(8),dimension(30) :: crack_old_half_length ! [m]
real(8),dimension(30) :: crack_initiationtime ! [yr]
real(8),dimension(30) :: crack_leakrate ! [m**3/s]
real(8),dimension(30) :: crack_coa ! [m**2]
real(8),dimension(30) :: crack_coa_1 ! [m**2]
real(8),dimension(30) :: crack_coa_3 ! [m**2]
real(8),dimension(30) :: crack_location ! [rad]
real(8),dimension(30) :: crack_timeoffailure ! [yr]
real(8),dimension(30) :: crack_timeoffailure_sse ! [yr]
real(8),dimension(30) :: crack_timeofdetection ! [yr]
real(8),dimension(30) :: crack_timeofleakdetection ! [yr]
real(8),dimension(30) :: crack_b1wh ! [-]

< Here, a number of lines of code are omitted. >
< Now, in subroutine run() >

 !==
 ! initialize all logging variables
 !==
 isFirstLeak = .TRUE.
 isRupture_SSE = .TRUE.
 isFirstInitiation = .TRUE.
 isCOA_1 = .TRUE.
 isCOA_3 = .TRUE.
 crack_ctype_log = 0
 crack_depth_log = zero
 crack_old_depth_log = zero !
 crack_half_length_log = zero
 crack_old_half_length_log = zero !
 crack_leakrate_log = zero
 crack_surfk0_log = zero
 crack_average_coa_log = zero
 crack_pond_log = zero
 crack_surfk90_log = zero
 total_leakrate_log = zero
 first_leak_log = zero
 coa_1_log = zero
 coa_3_log = zero
 rupture_log = zero
 rupture_sse_log = zero
 first_initiation_log = zero

< Here, a number of lines of code are omitted. >

 !==
 ! initialization section for local namespace
 !==
 pi = 4.0d0*atan(one) ! pi to machine precision [-]
 average_cod = zero ! crack-opening-displacement total [m]
 current_time = zero ! [yr]
 previous_time = -time_step ! [yr]
 !
 tref = grower_tref !pwscc parameter eqn 13 of program plan [K]
 qoverr = grower_qoverr !pwscc parameter eqn 13 of program plan [K]
 alpha = grower_alpha !pwscc parameter eqn 13 of program plan [-]
 beta = grower_beta !pwscc parameter eqn 13 of program plan [-]

C–37

 kth = grower_kth !pwscc parameter eqn 13 of program plan [MPa(m)**0.5]
!
 temp = temperature !temperature [C]
 tinterval = time_step !time interval [yr]
 thickness = pipe_wall_thickness !pipe wall thickness [m]
 rinner = 0.5d0*pipe_inner_diameter !inner pipe radius [m]
 router = 0.5d0*pipe_outer_diameter !outer pipe radius [m]
 rmean = 0.5d0*(rinner+router) !mean radius [m]
 rovert = rinner/thickness !inner radius normalized by the wall thickness [-]
 sigflow = 0.5d0*(weld_yieldstrength+weld_ultimatestrength) ! material flow stress[MPa]
 axialload = dw_fx + te_fx + ts_fx ! total axial load without pressure [kN]

 next_inspection = inspection_Interval ! initialize inspection time
 crack_isdetected = .false.
 crack_isleakdetected = .false.
 crack_timeoffailure = 61.0d0
 crack_timeoffailure_sse = 61.0d0
 crack_timeofdetection = zero
 crack_timeofleakdetection = zero
 crack_depth = zero ! [m]
 crack_old_depth = zero ! [m]
 crack_half_length = zero ! [m]
 crack_old_half_length = zero ! [m]
 crack_leakrate = zero ! [m**3/s]
 crack_coa = zero ! [m**2]
 crack_coa_1 = zero ! [m**2] coa=1 inch equivalent break diameter
 crack_coa_3 = zero ! [m**2] coa=3 inch equivalent break diameter

< Here, a number of lines of code are omitted. >

 ! --
 ! MOD Adding interface to crackenhancer module
 ! --
 ! load current values into crackenhancer input vector
 in_crackenhancer(1) = zcracklengthenhance
 in_crackenhancer(2) = zcracksizeenhance
 in_crackenhancer(3) = a ! crack depth [m]
 in_crackenhancer(4) = c ! crack half-length after grower
 olddepth = a ! the initial value before modification
 oldhalf = c ! the initial value before modification
 crack_old_depth(icrack) = a ! track old crack depth [m]
 crack_old_half_length(icrack) = c ! track old crack half length [m]
 write(101,'('' Crack Initiated = '',i12)') icrack
 write(101,'('' a before = '',ES12.5)') a
 write(101,'('' c begore = '',ES12.5)') c
 if (crack_ctype(icrack) .EQ. -1) then
 call crackenhancer(in_crackenhancer, out_crackenhancer)
 endif
 ! update a and c values
 a = out_crackenhancer(1)
 c = out_crackenhancer(2)
 write(101,'('' a after = '',ES12.5)') a
 write(101,'('' c after = '',ES12.5)') c

< Here, a number of lines of code are omitted. >

 ! --
 ! load in logging data
 ! --
 if (icrack .LE. 19) then
 if (itime .EQ. 0) then
 crack_depth_log(itime,icrack) = crack_depth(icrack) ! current
 ! crack depth [m]
 crack_old_depth_log(itime,icrack) =
 crack_old_depth(icrack)
 crack_half_length_log(itime,icrack) = crack_half_length(icrack) ! current
 ! crack half length [m]
 crack_old_half_length_log(itime,icrack =
 crack_old_half_length(itime,icrack)

C–38

 crack_ctype_log(itime,icrack) = crack_ctype(icrack)
 crack_surfk90_log(itime,icrack) = max(surfk90,0.0d0)
 crack_surfk0_log(itime,icrack) = max(surfk0,0.0d0)
 crack_frac_area_log(itime,icrack) = frac_area
 else
 crack_depth_log(itime-1,icrack) = crack_depth(icrack) ! current
 !crack depth [m]
 crack_half_length_log(itime-1,icrack) = crack_half_length(icrack) ! current
 ! crack half length [m]
 crack_ctype_log(itime-1,icrack) = crack_ctype(icrack)
 crack_surfk90_log(itime-1,icrack) = max(surfk90,0.0d0)
 crack_surfk0_log(itime-1,icrack) = max(surfk0,0.0d0)
 crack_frac_area_log(itime-1,icrack) = frac_area
 endif
 endif
 endif
 ! ---

 ! ---
 ! put a limit on the total crack length = 0.995 of inner circumference
 ! ---
 if (c .ge. 0.4975d0*pi*pipe_inner_diameter) then
 crack_timeoffailure(icrack) = previous_time
 ! ---
 ! complete log entries for remaining timesteps
 ! ---
 if (itime .EQ. 0) then
 crack_ctype_log(itime:720,1:19) = 200
 crack_depth_log(itime:720,icrack) = crack_depth(icrack)
 crack_old_depth_log(itime:720,icrack) =
 crack_old_depth(icrack)
 crack_half_length_log(itime:720,icrack) = crack_half_length(icrack)
 crack_old_half_length_log(itime:720,icrack) =
 crack_old_half_length(icrack)
 crack_surfk90_log(itime:720,icrack) = max(surfk90,0.0d0)
 crack_surfk0_log(itime:720,icrack) = max(surfk0,0.0d0)
 crack_frac_area_log(itime:720,icrack) = frac_area
 rupture_log(itime:720) = one
 else
 crack_ctype_log(itime-1:720,1:19) = 200
 crack_depth_log(itime-1:720,icrack) = crack_depth(icrack)
 crack_old_depth_log(itime-1:720,icrack) =
 crack_old_depth(icrack)
 crack_half_length_log(itime-1:720,icrack) = crack_half_length(icrack)
 crack_old_half_length_log(itime-1:720,icrack) =
 crack_old_half_length(icrack)
 crack_surfk90_log(itime-1:720,icrack) = max(surfk90,0.0d0)
 crack_surfk0_log(itime-1:720,icrack) = max(surfk0,0.0d0)

At this point, the timeloop wrapper and timeloop PYD had to be recompiled. This was done
using the same method previously described.

The crack_old_depth_log and crack_old_half_length_log arrays should be exposed to the
TimeLoopService module. The next step is to modify the
./src/service/TimeLoopServiceModule.py and write the array values to the appropriate stream
objects (export the data). To do this, the following edits were made to the
./src/service/TimeLoopServiceModule.py file. First, the class docs were updated to reflect the
input of the stream/file objects, which are passed from the RealizationsControllerModule. Next,
after the TimeLoop module has been called, the remainder of the TimeLoopServiceModule code
passes through several loops, which facilitate writing of logging data and writing to the
post-processing files. An important point to note here is that the operator “<<” is used in this
section of the code behaves differently for the Qt stream objects than for python. Here, the “<<”
adds the text characters to the Qt text stream (in turn appending the line of text to the open file).

C–39

class TimeLoopService(object):
 '''
 classdocs
 '''
 @staticmethod
 def executeTimeLoop(current_trial, debug, deterministic,
 stream_dict,
 stream_dict_pnd,
 stream_dict_ctype,
 stream_dict_other,
 stream_dict_depth,
 stream_dict_old_depth,
 stream_dict_half_length,
 stream_dict_old_half_length,
 stream_dict_surfk0,
 stream_dict_surfk90,
 stream_dict_coa,
 stream_dict_leakrate,
 caseName):
 '''
 Execute the TimeLoop for each realization
 write output to file and store in output datastore_out.tar.gz

 '''

< Here, a number of lines of code are omitted. >

 for icrack in xrange(3):
 icrk = "%03d" % (icrack+1)

 depth_fname = "depth_" + icrk + ".txt"
 old_depth_fname = "old_depth_" + icrk + ".txt"
 half_length_fname = "half_length_" + icrk + ".txt"
 old_half_length_fname = "old_half_length_" + icrk + ".txt"
 surfk0_fname = "surfk0_" + icrk + ".txt"
 surfk90_fname = "surfk90_" + icrk + ".txt"
 coa_fname = "coa_" + icrk + ".txt"
 leakrate_fname = "leakrate_" + icrk + ".txt"

 (stream_depth, fh_depth, fname_depth) = stream_dict_depth[depth_fname]
 (stream_half_length, fh_half_length, fname_half_length) =
 stream_dict_half_length[half_length_fname]
 (stream_old_depth, fh_old_depth, fname_old_depth) =
 stream_dict_old_depth[old_depth_fname]
 (stream_old_half_length, fh_old_half_length, fname_old_half_length) =
 stream_dict_old_half_length[old_half_length_fname]
 (stream_surfk0, fh_surfk0, fname_surfk0) = stream_dict_surfk0[surfk0_fname]
 (stream_surfk90, fh_surfk90, fname_surfk90)=
 stream_dict_surfk90[surfk90_fname]
 (stream_coa, fh_coa, fname_coa)= stream_dict_coa[coa_fname]
 (stream_leakrate, fh_leakrate, fname_leakrate) = stream_dict_leakrate[leakrate_fname]

 for itime in xrange(num_time_steps):
 stream_depth << timeloop.crack_depth_log[itime,icrack] << tab
 stream_half_length << timeloop.crack_half_length_log[itime,icrack] << tab
 stream_old_depth << timeloop.crack_old_depth_log[itime,icrack] << tab
 stream_old_half_length << timeloop.crack_old_half_length_log[itime,icrack] << tab
 stream_surfk0 << timeloop.crack_surfk0_log[itime,icrack] << tab
 stream_surfk90 << timeloop.crack_surfk90_log[itime,icrack] << tab
 stream_coa << timeloop.crack_average_coa_log[itime,icrack] << tab
 stream_leakrate << timeloop.crack_leakrate_log[itime,icrack] << tab

 stream_depth << nl
 stream_half_length << nl
 stream_old_depth << nl
 stream_old_half_length << nl
 stream_surfk0 << nl
 stream_surfk90 << nl
 stream_coa << nl
 stream_leakrate << nl

C–40

Before, the post-processing option can be requested from the XLPR-SIAM GUI, an additional
linkage must be created to ensure that the proper input is sent to the TRANSFORMERS and
EXPECTATION programs (i.e., see the following screenshot):

When the post-processing button is selected, the createPostProcessing method of
./src/view/customviews is called. The XLPR-SIAM GUI allows for user input of parameters for
TRANSFORMERS and EXPECTATION, which are used to automatically generate the required
input files for these programs. In adding this feature, the authors removed the direct user
interface with the input text files for these programs and have recompiled TRANSFORMERS
and EXPECTATION programs into one executable file. Because of this modification, the
additional variables must be added to the source code for the createPostProcessing method of
./src/view/customviews.py. This was done, and the source code edits follow.

< Here, a number of lines of code are omitted. >

 def createPostProcessing(self):

 self.save()

 (stream_options, fh_options) = Tools.createWriteOnlyTextFile('options.txt',
 where=self.postPath)
 (stream_exp_options, fh_exp_options) = Tools.createWriteOnlyTextFile(
 'EXP_options.txt', where=self.postPath)
 baseName = unicode(QFileInfo(self.filename).baseName())
 inspection_times = []

 try:
 #===
 # create the "variables_list.txt" file

C–41

 #===

< Here, a number of lines of code are omitted. >

 stream_var_list << "_old_depth_001.txt" << nl
 stream_var_list << "_old_depth_002.txt" << nl
 stream_var_list << "_old_depth_003.txt" << nl

 stream_var_list << "_old_half_length_001.txt" << nl
 stream_var_list << "_old_half_length_002.txt" << nl
 stream_var_list << "_old_half_length_003.txt" << nl

References

GoldSim Technology Group LLC. “GoldSim User’s Guide.” Vols 1 and 2. Version 10.11.
Issaquah, Washington: GoldSim Technology Group LLC. 2011.

Klasky, H.B., P.T. Williams, S. Yin, and B.R. Bass. “SIAM-xLPR Version 1.0 Framework
Report.” ORNL/NRC/LTR-248. Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010a.

Klasky, H.B., P.T. Williams, B.R. Bass, and S. Yin. “Structural Integrity Assessments
Modular-Probabilistic Fracture Mechanics (SIAM-PFM): User’s Guide for xLPR.”
ORNL/NRC/LTR–247. Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010b.

Summerfield, M. “Rapid GUI Programming With Python and QT.” ISBN–10: 0132354187.
Upper Saddle River, New Jersey: Prentice Hall. 2007.

	Assessment of Capabilities of Extremely Low Probability of Rupture FINAL RPT
	Appendix A SW QA
	Appendix B xLPR_VV
	Appendix C Implementation of a Dummy Module in GSxLPR and SIAMxLPR

